Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice

2017
Posted by: webmaster
Posted on: 2017/11/28 15:50:00

Marta Brozynska,
Dario Copetti,
Agnelo Furtado,
Rod A. Wing,
Darren Crayn,
Glen Fox,
Ryuji Ishikawa,
Robert J. Henry

Volume 15, Issue 6
June 2017
Pages 765–774

Keywords
assembly; molecular clock; sequencing; Oryza; phylogeny; wild rice

Publication History
Issue online:
10 May 2017
Version of record online:
23 January 2017
Accepted manuscript online:
27 November 2016
Manuscript Accepted:
23 November 2016
Manuscript Revised:
10 October 2016
Manuscript Received:
14 July 2016

Summary

The related A genome species of the Oryza genus are the effective gene pool for rice. Here, we report draft genomes for two Australian wild A genome taxa: O. rufipogon-like population, referred to as Taxon A, and O. meridionalis-like population, referred to as Taxon B. These two taxa were sequenced and assembled by integration of short- and long-read next-generation sequencing (NGS) data to create a genomic platform for a wider rice gene pool. Here, we report
that, despite the distinct chloroplast genome, the nuclear genome of the Australian Taxon A has a sequence that is much closer to that of domesticated rice (O. sativa) than to the other Australian wild populations. Analysis of 4643 genes in the A genome clade showed that the Australian annual, O. meridionalis, and related perennial taxa have the most divergent (around 3 million years) genome sequences relative to domesticated rice. A test for admixture showed possible introgression into the Australian Taxon A (diverged around 1.6 million years ago) especially from the wild indica/O. nivara clade in Asia. These results demonstrate that northern Australia may be the centre of diversity of the A genome Oryza and suggest the possibility that this might also be the centre of origin of this group and represent an important resource for rice improvement.