Genome and evolution of the shade-requiring medicinal herb Panax ginseng
2018
Posted by: webmaster

Nam?Hoon Kim Murukarthick Jayakodi Sang?Choon Lee Beom?Soon Choi Wooljong Jang
Junki Lee Hyun Hee Kim Nomar E. Waminal Meiyappan Lakshmanan Binh van Nguyen Yun
Sun Lee Hyun?Seung Park Hyun Jo Koo Jee Young Park Sampath Perumal Ho Jun Joh
Hana Lee Jinkyung Kim In Seo Kim Kyunghee Kim Lokanand Koduru Kyo Bin Kang Sang
Hyun Sung Yeisoo Yu Daniel S. Park Doil Choi Eunyoung Seo Seungill Kim Young?Chang
Kim Dong Yun Hyun Youn?Il Park Changsoo Kim Tae?Ho Lee Hyun Uk Kim Moon Soo Soh
Lee Andrew H. Paterson Tae?Jin Yang

Summary
Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long
generation time, low seed production and complicated genome structure that hamper its study.
Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly,
representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid
Panax species diverged in association with global warming in Southern Asia, and two North
American species evolved via two intercontinental migrations. Two whole genome duplications
(WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae,
the more recent one contributing to the ability of P. ginseng to overwinter, enabling it to spread
broadly through the Northern Hemisphere. Functional and evolutionary analyses suggest that
production of pharmacologically important dammarane?type ginsenosides originated in Panax
and are produced largely in shoot tissues and transported to roots; that newly evolved P.
ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of
chlorophyll a/b binding protein genes enables efficient photosynthesis under low light. A
genome?scale metabolic network provides a holistic view of Panax ginsenoside biosynthesis.
This study provides valuable resources for improving medicinal values of ginseng either through
genomics?assisted breeding or metabolic engineering.

https://doi.org/10.1111/pbi.12926