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 47 

Abstract 48 

A high-performance computing genome variant calling workflow was designed to run GATK 49 

on HPC platforms. This workflow efficiently called an average of 27.3 M, 32.6 M, 168.9 M, 50 

and 16.2 M SNPs for rice, sorghum, maize, and soybean, respectively, on the most recently 51 

released high-quality reference sequences. Analysis of a rice pan-genome reference panel 52 

revealed 2.1 M novel SNPs that have yet to be publicly released.  53 
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Single-nucleotide polymorphisms (SNPs) are the most common type of genetic variation 54 

used for studying genetic diversity among living organisms1, and are routinely detected by 55 

mapping resequencing data to a reference genome sequence using various software tools2-4. 56 

The Genome Analysis Toolkit (GATK), one of the most popular software tools developed for 57 

SNP identification, has been widely used for SNP detection for many species and can be 58 

compiled on multiple computing platforms5,6. Although vast amounts of resequencing data 59 

have contributed significantly to the study of genetic diversity, at least three challenges 60 

remain to be solved for the speed and efficiency of SNP detection. First, the exponential 61 

increase in sequencing and resequencing data requires intelligent data management solutions 62 

and compressed data formats to reduce storage7,8; second, data analysis needs flexible 63 

workflows and monitoring tools for high-throughput detection and debugging9; and third, 64 

modern high-performance computing (HPC) architectures are needed to complete jobs 65 

efficiently10,11. To address these (and other) bottlenecks, we developed an open source HPC-66 

based automated and flexible genome variant calling workflow for (i.e., HPC-GVCW) for 67 

GATK, and tested it on four major crop species (i.e., rice, sorghum, maize, and soybean) 68 

using publicly available resequencing data sets and their most up-to-date (near) gap-free 69 

reference genome releases. 70 

 71 

HPC-GVCW was designed into four phases: (1) mapping, (2) variant calling, (3) call set 72 

refinement and consolidation, and (4) variant merging (Supplementary Figure 1a, 73 

Supplementary Figure 2, Supplementary Table 1, and Supplementary Note 1). The workflow 74 

was also designed to run on various computational platforms, including high-performance 75 

computers, hybrid clusters, and high-end workstations (Supplementary Figure 1b). For phase 76 

3, a data parallelization algorithm “Genome Index splitter” (GIS release1.2, 77 

https://github.com/IBEXCluster/Genome-Index-splitter) was developed to split chromosome 78 

pseudomolecules into multiple chunks (Supplementary Figure 2e and Supplementary Note 1). 79 

Leveraging this algorithm ensures that the creation of disjoint variant intervals is optimized 80 

based on genome size and computational resources, thereby preventing the underutilization 81 

of resources and the reduction of execution times. Of note, each of the four phases is 82 

independent of one another, flexible, and automatically scalable across multiple nodes and 83 

platforms, which leads to an efficient SNP calling workflow (Supplementary Note 1). 84 

 85 

HPC-GVCW is fully open resource, with all scripts, workflows, and instructions available at 86 

GitHub (https://github.com/IBEXCluster/Rice-Variant-Calling) (Supplementary Note 1). In 87 
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addition, to enhance the flexibility of computing platforms and applications, robust 88 

containerization solutions, including Docker12 and Singularity13 were developed (see Data 89 

availability). 90 

 91 

To evaluate the precision and execution time performance of GVCW, we assessed the 92 

workflow across three computational platforms - i.e., supercomputer, clusters, and high-end 93 

workstations, using a subset of the 3K-RGP dataset14 (n = 30) mapped to the IRGSP 94 

RefSeq15, and observed a 83-94% identical call rate when compared with previously 95 

published results16 and across different platforms (Supplementary Figure 3a). Next, we 96 

interrogated the workflow on much larger resequencing data sets from multiple crop species 97 

data sets (rice [n=3,024]14, sorghum [n=400]17, maize [n=282]18, and soybean [n=198]19) on 98 

supercomputers and clusters, where we found identical call rates of between 77.8%-83.2% as 99 

compared with published results14,17, except for maize, where we identified 167.6 M of SNPs, 100 

of which 41.9 M overlapped with published results18 (Supplementary Figure 3b-d, 101 

Supplementary Table 2, and Supplementary Note 2). Execution time performance showed 102 

that GVCW can efficiently call SNPs across whole genomes in 5-10 days depending on the 103 

number of resequencing samples, genomes size and computational platform (Supplementary 104 

Table 3 and Supplementary Note 2). In short, our benchmarking exercise confirms that 105 

GVCW can be efficiently used to rapidly identify SNPs using large datasets for major crop 106 

species. 107 

 108 

Since the majority of publicly available SNP data for major crop species has yet to be 109 

updated on the recent wave of ultra-high-quality reference genomes coming online, we 110 

applied GVCW to call SNPs, with the same large resequencing datasets, on the most current 111 

and publicly available genome releases for rice (i.e., the 16 genome Rice Population 112 

Reference Panel)20-22, maize (B73 v4 and v5)23, sorghum (Tx2783, Tx436, and TX430)24, and 113 

soybean (Wm82 and JD17)25. The results, shown in Table 1, revealed that an average of 27.3 114 

M (rice), 32.6 M (sorghum), 168.9 M (maize), and 16.2 M (soybean) SNPs per genome could 115 

be identified for each crop species, of which 3.0 M (rice), 7.8 M (sorghum), 4.4 M (maize), 116 

and 6.1 M (soybean) SNPs are located in exons using SNPEff26 (Table 1 and Supplementary 117 

Table 4). Of note, SNP data for rice (i.e., ARC, N22, AZU, IR64, IRGSP, MH63 ZS97) and 118 

sorghum (Tx2783) genome data sets can be visualized at the Gramene 119 

(https://oryza.gramene.org/) and Sorghumbase (https://sorghumbase.org/) web portals, 120 

respectively (Supplementary Figure 4). In addition, all SNP data produced for this 24-121 
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genome reference set have been publicly released through the SNP-Seek (https://snp-122 

seek.irri.org/), Gramene (www.Gramene.org), and KAUST Research Repository (KRR, 123 

https://doi.org/10.25781/KAUST-12WKO)27 public databases for immediate access (also see 124 

Data availability). 125 

 126 

Having the ability to map large-scale resequencing datasets rapidly (e.g., 3K-RGP) to 127 

multiple genomes (e.g., the 16-genome RPRP dataset), GVCW opens the possibility to 128 

rigorously interrogate population-level pan-genome datasets for core, dispensable, and 129 

private variants (e.g., SNPs, insertions/deletions, inversions). 130 

Our analysis of the 3K-RGP dataset14 mapped to the 16-genome RPRP dataset21 revealed a 131 

core genome of 314.1 Mb, an average dispensable genome of 56.55 Mb, and a private 132 

genome of ~745 Kb/genome (see methods for definitions), that contain ~22.4 M, 3.2 M and 133 

33.8 K SNPs, respectively (Supplementary table 5, Supplementary Figure 5, and 134 

Supplementary Dataset 1-3). We found that an average of 36.5 Mb of genomic sequence is 135 

absent in a single rice genome but is present in at least one of the other 15 RPRP data sets, 136 

which is equivalent to ~2.1 M SNPs (Figure 1, Supplementary Figure 5, and Supplementary 137 

Table 5). For example, when considering the most widely used reference genome for rice, 138 

i.e., in the IRGSP RefSeq15, a total of ~36.6 Mb of genomic sequence is completely absent in 139 

the IRGSP RefSeq but is found spread across at least one of the 15 genomes (~2.43 140 

Mb/genome), and includes ~2.3 M previously unidentified SNPs (Figure 1, Supplementary 141 

Table 5). 142 

 143 

Performing a similar analysis on gene content using the Rice Gene Index (RGI) database22 144 

enabled us to identify an average of 24,700, 6,577, and 293 core, dispensable and private 145 

homologous gene groups (see methods for definitions) across the 16-genome RPRP data set, 146 

respectively (Supplementary Table 5 and Supplementary Dataset 4), equating to 5.5 M SNPs 147 

(2.4 M exonic), 0.8 M SNPs (0.2 M exonic), and 37.8 K SNPs (9.6 K exonic) (Figure 1, 148 

Supplementary Figure 6 and Supplementary Table 5), respectively. Importantly, on average, 149 

a total of ~10.3 K genes present in 15 of the 16 RPRP genomes (687 genes/genome) are 150 

absent in a single RPRP genome, and equates to ~1.4 M SNPs (0.38 M exonic) (Figure 1, 151 

Supplementary Figure 6 and Supplementary Table 5). Again, taking the IRGSP RefSeq as an 152 

example, a total of 9,812 genes (accounting for 1.3 M SNPs [0.36 M exonic]) detected in 153 

15/16 of the RPRP genomes are absent in the IRGSP RefSeq (Figure 1 and Supplementary 154 
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Table 5). 155 

 156 

Many of the genes and SNPs identified in our pan-genome variant analysis have yet to be 157 

tested for their contributions to agronomic performance and biotic and abiotic stresses. For 158 

example, prolonged submergence during floods can cause significant constraints to rice 159 

production resulting in millions of dollars of lost farmer income28. One solution to flooding 160 

survival has been to cross the Sub1A gene, first discovered in a tolerant indica derivative of 161 

the FR13A cultivar (IR40931-26) in 200628, into mega rice varieties such as Swarna, Sambha 162 

Mahsuri, and IR6428,29. Our analysis of the Sub1A locus across the pan-genome of rice 163 

showed that this gene could only be observed in 4 out of 16 genomes in the RPRP data set, 164 

including IR64 (Figure 1C-D). Since Sub1A is absent in the IRGSP RefSeq, the genetic 165 

diversity of this locus can only be revealed through the analyses of reference genomes that 166 

contain this gene. Thus, we applied the IR64 reference as the base genome for SNP 167 

comparisons, and identified a total of 26 SNPs in the Sub1A locus across 3K-RGP 168 

(Supplementary Dataset 5), 6 of which have minor allele frequencies (MAF) greater than 1% 169 

(Figure 1F), including a previously reported SNP (7,546,665-G/A) that resulted in a non-170 

conservative amino acid change from serine (S, Sub1A-1, tolerance-specific allele) to proline 171 

(P, Sub1A-2, intolerance-specific allele)28 (Figure 1E-F). The majority of accessions in the 172 

3K-RGP data set (i.e., 2,173) do not contain the Sub1A gene, while 848 do, 668 of which 173 

(22.11%) have the Sub1A-2 allele, while 180 accessions (5.96%) contain the Sub1A-1 allele 174 

(Figure 1F). Understanding the genetic diversity of the Sub-1A gene at the population level 175 

helps us understand and filter variants that are predicted to show flooding tolerance across the 176 

3K-RGP, which could be further applied to precise molecular-assisted selection (MAS) 177 

breeding programs. In addition, such pan-genome analyses may also reveal new variants that 178 

could provide valuable insights into the molecular mechanisms of flooding tolerance. 179 

 180 

With the ability to produce ultra-high-quality reference genomes and population-level 181 

resequencing data - at will - accelerated and parallel data processing methods must be 182 

developed to efficiently call genetic variation at scale. Some of the accelerated workflows 183 

include Sentieon30 (a commercial license), Clara Parabricks31 (NVIDIA GPU-based 184 

infrastructure), Falcon32 (hybrid FPGA-CPU cloud-based software), and DRAGEN-GATK33 185 

(open source software recently made available through the Broad Institute cloud platform, 186 

https://broadinstitute.github.io/warp/) are the examples. These workflows require special 187 
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hardware (e.g., GPUs, FPGAs) or a cloud computing platform to accelerate the data 188 

processing, and/or can be expensive to purchase. To address such limitations, we developed a 189 

publicly available high-performance computing pipeline - i.e., the Automated and Flexible 190 

Genome Variant Calling Workflow (HPC-GVCW) - for one of the most popular SNP callers 191 

– GATK5,6. GVCW is supported across diversified computational platforms, i.e., desktops, 192 

workstations, clusters, and other high-performance computing architectures, and was 193 

containerized for both Docker12 and Singularity13, for reproducible results without 194 

reinstallation and software version incompatibilities. 195 

 196 

Comparison of SNP calls on identical data sets (i.e., rice 3K-RGP to the IRGSP RefSeq and 197 

400 samples from Sorghum Association Panel to the BT623v3.1) yielded similar results, 198 

however, run times could be reduced from more than six months to less than one week (~24 199 

times faster), as in the case for rice 3K-RGP14. The GVCW pipeline enabled the rapid 200 

identification of a large amount of genetic variation across multiple crops, including 201 

sorghum, maize, and soybean on the world’s most up-to-date, high-quality reference 202 

genomes. These SNPs provide an updated resource of genetic diversity that can be utilized 203 

for both crop improvement and basic research, and are freely available through the SNP-Seek 204 

(https://snp-seek.irri.org/), Gramene (www.Gramene.org) web portals, and KAUST Research 205 

Repository (KRR, https://doi.org/10.25781/KAUST-12WKO)27. 206 

 207 

Key to our ability to rapidly call SNPs on a variety of computational architectures lies in the 208 

design of the HPC environment and the distribution of work across multiple nodes. Our next 209 

steps will be to apply GVCW on improved computing platforms, e.g., KAUST Shaheen III 210 

with unlimited storage and file number, 5,000 nodes, faster I/O, and tests on larger 211 

forthcoming data sets (https://www.kaust.edu.sa/en/news/kaust-selects-hpe-to-build-212 

powerful-supercomputer). In addition to GATK, other SNP detection strategies such as the 213 

machine learning based tool “DeepVariant”2, which shows better performance in execution 214 

times with human data4, has yet to be widely used in plants. With a preliminary analysis of 215 

rice 3K-RGP dataset, “DeepVariant” identified a larger number of variants at a similar or 216 

lower error rate compared to GATK (https://cloud.google.com/blog/products/data-217 

analytics/analyzing-3024-rice-genomes-characterized-by-deepvariant). To test how artificial 218 

intelligence (AI) can be used to improve food security by accelerating the genetic 219 

improvement of major crop species, we plan to integrate “DeepVariant” into our HPC 220 

workflow to discover and explore new uncharacterized variation. In addition, we also plan to 221 
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apply similar pan-genome strategies on more species beyond rice, sorghum, maize and 222 

soybean to discover and characterize hidden SNPs and diversity, which could provide robust 223 

and vital resources to facilitate future genetic studies and breeding programs.224 
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Table 1. Number of SNPs identified across four major crop species using their most recent public genome releases. 225 

Species Reference Genome Acronyms GenBank ID Number of 
SNPs 

SNPs in 
exons 

SNPs in 3' 
UTR 

SNPs in 5' 
UTR  

Rice  
(Oryza sativa) 

 
Genome Size:  

~400 Mb 

GJ-temp: IRGSP IRGSP GCF_001433935.1 26,516,112 3,060,410 319,632 232,847 

GJ-subtrp: CHAO 
MEO CM GCA_009831315.1 27,024,845 3,069,706 356,381 233,761 

GJ-trop1: Azucena AZ GCA_009830595.1 27,316,403 3,081,793 345,485 226,235 
GJ-trop2: KETAN 

NANGKA KN GCA_009831275.1 27,331,337 3,031,741 335,086 219,831 

cB: ARC 10497 ARC GCA_009831255.1 27,286,525 2,984,499 324,769 211,937 

XI-1A: 
ZhenShan97RS3 ZS97 GCA_001623345.2 27,439,649 3,504,390 573,128 406,815 

XI-1B1: IR 64 IR64 GCA_009914875.1 27,084,312 2,822,657 311,142 203,724 

XI-1B2: PR 106 PR106 GCA_009831045.1 27,461,145 3,029,730 343,797 224,081 

XI-2A: GOBOL SAIL GS GCA_009831025.1 27,608,213 2,885,485 293,846 198,221 

XI-2B: LARHA 
MUGAD LM GCA_009831355.1 27,974,114 2,921,223 307,604 206,271 

XI-3A: LIMA LIMA GCA_009829395.1 27,053,048 2,838,843 301,480 197,894 
XI-3B1: KHAO YAI 

GUANG KYG GCA_009831295.1 27,378,477 2,911,252 307,567 201,613 

XI-3B2: LIU XU LX GCA_009829375.1 27,759,204 2,939,867 311,835 213,624 

XI-adm: MH63RS3 MH63 GCA_001623365.2 27,503,492 3,509,396 603,812 422,385 

cA1: N22 N22 GCA_001952365.3 27,594,493 3,019,972 328,996 229,046 

cA2: NATEL BORO NABO GCA_009831335.1 28,044,207 2,979,119 312,640 212,806 

Sorghum 
(Sorghum bicolor) 

(Genome Size: ~600 Mb) 

BT623v3.1 - GCF_000003195.3 32,698,281 1,078,742 793,513 675,414 

Tx2783 - GCA_903166285.1 32,537,001 752,298 327,512 205,336 

Tx436 - GCA_903166325.1 32,748,001 868,964 422,070 247,710 

Tx430 - GCA_003482435.1 35,102,930 1,194,497 360,556 236,007 

Maize 
(Zea mays) 

Genome Size: ~2000 Mb 

B73v4 - GCF_000005005.2 167,604,407 5,789,626 3,758,096 3,413,940 

B73V5 - GCA_902167145.1 170,004,877 3,073,808 1,325,232 1,023,768 

Soybean 
(Glycine max) 

Genome Size: ~1000 Mb 

Wm82.a2.v1 - Gmax 275 15,994,704 812,611 267,541 194,096 

JD17 - GCA_021733175.1 16,341,705 569,416 213,129 147,393 
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Figure1. Rice Population Reference Panel (RPRP)21 pan-genome variant analysis. 227 

a, Circos plot depicts the distribution of genomic attributes along the IRGSP RefSeq (window size = 500 Kb). b, Comparison of genomic 228 

attributes, i.e., genes, SNPs, Pi, and Theta on chromosome 9 across the 16 RPRP pan-genome data sets (window size = 10 Kb). c, Rice Gene 229 

Index (RGI) comparison of the Sub loci across the 16 RPRP pan-genome data set. d, Phylogenetic analysis of Sub1A, Sub1B, and Sub1C across 230 

the 16 RPRP pan-genome data set. e, Amino acid alignment of the Sub1A gene across the RPRP. f, Survey of SNPs within the Sub1A gene 231 

across the 3K-RGP resequencing data set. This analysis revealed the genomic status of the Sub1A gene (presence/absence; submergence 232 

tolerance/intolerance) across the 3K-RGP data set.233 
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 234 

Supplementary files 235 

Supplementary Note 1: Automated and Flexible computing genome variant calling workflow 236 
(HPC-GVCW). 237 
Supplementary Note 2: GVCW workflow performance. 238 

Supplementary Note 3: Acronyms used in this manuscript. 239 

 240 

Data availability 241 

All sequence data are available in public databases as follows. 242 

 243 

All genome assemblies for rice, sorghum, maize, and soybean were retrieved from NCBI 244 

(Table 1), except for Wm82.a2.v1, which is available at the Phytozome (https://phytozome-245 

next.jgi.doe.gov/info/Gmax_Wm82_a2_v1). 246 

 247 

Genome resequencing data sets for rice (n=3,024), sorghum (n=400), maize (n=282), and 248 

soybean (n=198) were retrieved from NCBI via BioProject accession numbers:  249 

PRJEB6180 (https://www.ncbi.nlm.nih.gov/bioproject/PRJEB6180),  250 

PRJEB50066 (https://www.ncbi.nlm.nih.gov/bioproject/PRJEB50066),  251 

PRJNA389800 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA389800), and  252 

PRJDB7281 (https://www.ncbi.nlm.nih.gov/bioproject/PRJDB7786) respectively. 253 

 254 

SNP datasets for the RPRP pan-genome are publicly available at: 255 

SNP-Seek (https://snp-seek.irri.org/_download.zul);  256 

Gramene (http://ftp.gramene.org/collaborators/Yong_et_al_variation_dumps/); 257 

KAUST Research Repository (KRR, https://doi.org/10.25781/KAUST-12WKO)27. 258 

 259 

Realignment data sets of near variant regions (cram file format) of the O. sativa 16-genome 260 

RPRP data set are available through Amazon Web Services (AWS) 3kricegenome bucket at 261 

SNP-Seek (https://snp-seek.irri.org/_download.zul). 262 

 263 

SNP datasets for sorghum, soybean, and maize are released at Gramene 264 

(http://ftp.gramene.org/collaborators/Yong_et_al_variation_dumps/), and KAUST Research 265 

Repository (KRR, https://doi.org/10.25781/KAUST-12WKO)27. 266 
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SNP datasets for sorghum can be visualized from the Sorghumbase web portal 268 

(https://www.sorghumbase.org/). 269 

 270 

Code availability 271 

All code for the Automated and Flexible Workflow for Genome Variant Calling (GVCW) is 272 

available on the GitHub page: https://github.com/IBEXCluster/Rice-Variant-Calling. 273 

 274 

The Docker and Singularity images are available at https://github.com/IBEXCluster/Rice-275 

Variant-Calling/wiki/Docker and https://github.com/IBEXCluster/Rice-Variant-276 

Calling/tree/main/Singularity, respectively. 277 
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