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Abstract

With the development of new high-information content fingerprinting techniques for constructing BAC-based physical maps, physical map
construction is accelerating and it is important to determine which methodologies work best. In a recent publication (Z. Xu et al., 2004, Genomics
84:941-951), Xu et al. evaluated five different techniques (one agarose-based and four using multiple enzymes) and concluded that a two-enzyme
technique was superior. In addition, they found that no benefit was gained from fingerprinting more than 10x coverage. In this paper we report our
own extensive simulation results, which lead to contrasting conclusions. Our data indicate that the five-enzyme method known as SNaPshot is the
most effective and that the assembly can in fact be significantly improved with greater than 10x coverage.

© 2006 Elsevier Inc. All rights reserved.
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Fingerprinted maps have been generated for over 20 years
using a range of methods, which vary in the substrate, detection
of fragments, and number of enzymes used. The most
widespread approach is referred to as the agarose method,
which was used for the human map [2]. Recently, high-
information content fingerprinting (HICF) [3—7] has been used
for large genomes. In all cases, the fingerprints are assembled
using the Fingerprinted Contigs program (FPC) [8,9]. Though
fingerprinted maps are created by only a small number of
laboratories since they require special expertise and equipment,
they benefit many scientists as they greatly aid the sequencing
of large genomes and can be used to provide the locations of
genes and other loci. Hence, it is important to determine the best
method for building fingerprinted maps.

Since it would be very difficult to optimize all the different
methods to compare them experimentally, it is advantageous to
evaluate the methods with simulations, as the results provide a
guide to the method(s) worth experimental optimization. Xu et
al. [1] provided a simulation of perfect fingerprints comparing
five methods that used between one and five enzymes. They
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found that the two-enzyme method of Zhang and Wing [10]
worked better than the five-enzyme HICF method of Luo et al.
[4]. We found this result counterintuitive since the five-enzyme
method provides much more information than the two-enzyme
method (described under Results), so it should discriminate
better between false positive (F+) and false negative (F—) clone
overlaps. Xu et al. did not provide access to their data or
simulation code, so we developed our own simulations to verify
their results. In contrast to their results, we found that the five-
enzyme method worked best. As our results differ greatly from
the published results, we feel it is important to the community to
make ours available.

Xu et al. ran their simulations on three chromosomes and a
concatenation of the chromosomes, using four genome cover-
age levels (5%, 8%, 10x, 15x), with the five methods, and two
cutoff conditions, which control the approximate amount of
error in an assembly (as explained below). We ran our
simulations on the same three chromosomes, four genome
coverages, and five methods. We also ran simulations on nine
additional chromosomes, generated two sets of random clones
for each chromosome, and tested three cutoff conditions. We
automated the simulation and evaluation so that we could easily
run tests on many sequenced genomes, parameters, and cutoff
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conditions. Our code and results from all datasets (comprising
1920 different FPC builds) are available at http://www.agcol.
arizona.edu/software/fpc/sim, making our results fully verifi-
able and allowing other researchers to apply our methodology to
other sequences if desired.

This article briefly describes the parameters that need to be
considered, the five methods, and the results of our simulation
compared to those of Xu et al. [1]. We discuss the possible
reason for the disparity of results and also discuss a few of the
more salient problems we found with their study. We also
briefly discuss our experience with two whole genome maps
created for maize, one with the agarose method and one with an
HICF method.

Results
Methods and parameters

FPC has three parameters that need to be set for assembling
the fingerprints into contigs: (1) The “tolerance” is the
difference allowed between the sizes of two bands from
different clones in order to call them shared (i.e., the same
piece of DNA). (2) The “gel length” is the total number of
possible values that the bands may have. (3) The fingerprints of
each pair of clones are compared, and the probability that the
shared bands are a coincidence is computed; if this coincidence
score is below a given “cutoff,” the clones are considered
overlapping. It is important to set the cutoff to minimize the
number of F+ and F— overlaps. The equation that computes the
score uses the tolerance and gel length, along with the number
of shared bands between the two clones.

We use the terminology of Xu et al. for referring to the
fingerprinting methods by the number of enzymes used, that is,
le to 5e. The enzymes and labeling for the methods are as
follows (when bands are “labeled,” only the labeled bands are
detected):

1. The le method [11,12] uses the 6-cutter HindIIl and all
bands are detected.

2. The 2e method [10] uses the 4-cutter Haelll and the 6-cutter
Hindlll, and the overhang of the HindlIIl is labeled.

3. The 3e method [1] is similar to the 2¢ but has an additional 6-
cutter (unlabeled) BamHI digestion, and it uses a lower
tolerance (as discussed below).

4. The 4e method [3] uses separate digestions of the 6-cutter/4-
cutter pairs HindIll/Haelll, HindIIl/Rsal, and HindIIl/Dpnl,
and the Hindlll ends are labeled by a different dye in each
pair.

5. The 5e method [1,4] employs the 4-cutter Haelll and the 6-
cutters BamHI, HindIll, Xbal, and Xhol, and the 6-cutters
create overhanging ends that are then labeled with four
different dyes depending on the end base.

Methods le, 2e, and 3e each produce a single set of bands,
while methods 4e and 5e generate three and four sets of bands,
respectively. Multiple band sets are entered into FPC with a
unique offset so that bands from different sets cannot be

considered the same [3,7]. For example, as Table 1 shows, Se
has an average of 132 bands, but these are from four sets,
resulting in an average 33 bands per set, where the four sets
correspond to the four dyes and the corresponding offsets were
(0, 10000, 20000, 30000).

In practice, the le method is run on an agarose gel and the 2e
method (as specified in [1]) is run on a polyacrylamide gel. In
both cases, the bands are scored manually with the aid of the
Image program [13]. The 3e, 4e, and 5S¢ methods are run on
sequencing machines that produce trace files, and a threshold is
set to distinguish automatically the true bands from the noise.
Under experimental conditions this separation is imperfect,
giving rise to false-positive and false-negative bands [7];
however, in both our results and those of Xu et al. this error has
not been simulated, so they reflect the performance of the
methods under ideal conditions.

The bands produced from sequencing machines have integer
and fractional values and it has been shown that the sizing often
discriminates between two bands of the same underlying size
but with different base composition [4,7]. Since 3e, 4e, and Se
have fractional values, the band sizes and tolerance are
multiplied by 10 (as FPC accepts only integers). We used a
constant tolerance of 4 (0.4 bp) for the three methods that run on
a sequencing machine, as determined by Luo et al. [4], whereas
Xu et al. used a tolerance of 2, 5, and 2, respectively. Note that
the tolerance of 2 for the 2e method is much less stringent than
the tolerance of 4 used for the 3e, 4e, and 5¢ methods, since the
2e sizes are not multiplied by 10. This lower stringency reflects
the fact that the 2e method is assumed to be manually scored.

Xu et al. did not provide gel lengths, though they did provide
the range of band sizes for each method, hence, we were able to
compute the correct gel lengths, as shown in Table 1 (capillary
electrophoresis does not employ gels, but the term “gel length”
continues to be used for the number of possible bands).

Table 1
Information about the five methods

Method No. of Average Band size Gel Xuetal. Our

sets®  No. of  range (bp) length  tolerance® tolerance
bands
le 1 30 600-16,000° 3,300 0.7% 7
2e 1 47 58-773 715 2 2
3e 1 47¢ 35-500 4,650° 2 4
4e 3 109¢ 75-500 12,750¢ 5 4
Se 4 132 35-500 18,600¢ 2 4

# Number of distinct sets of bands, where bands cannot be called shared
between sets.

® Xu et al. and our tolerances are different for 1e since we used migration rates
and Xu et al. used sizes. For the three methods using a sequencing machine, we
used a constant 0.4 for each, as that is the value found by Luo et al. [4] and
Nelson et al. [7] on the ABI 3100 and ABI 3730. Xu et al. simulated the 2¢ and
Se methods for the ABI 3100 and the 4e method for the ABI 377, stating that the
tolerances were 0.2 and 0.5, respectively.

¢ Xu et al. used sizes, whereas we used migration rates. The sizes used by Xu
et al. correspond to the migration rates 2293 to 565 that we used. The gel length
of 3300 was used as that is the default for agarose.

4 Xu et al. report 71.7 bands for the 3¢ method and 73.8 for the 4e method.

¢ Computation of gel lengths: 3e is (500-35)x 10 x 1; 4e is (500—75)x 10 % 3;
5e is (500-35)x 10 x 4.
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Cutoff conditions

The same cutoff should not be used to compare the different
fingerprinting methods because the coincidence scores for clone
overlaps vary widely depending on the tolerance, gel length,
and number of bands found in the different methods; instead, as
was done by Xu et al., a method-independent “cutoff condition”
should be used to determine the cutoff in each case. The cutoff
condition is designed to control the amount of error in an
assembly, so that the assemblies made by different methods
have similar contig quality.

Xu et al. used a “1% Q” cutoff condition, in which a “Q”
(questionable) clone is an FPC term for one that does not align
well to the underlying consensus band (CB) map (i.e.,
approximate restriction fragment map). The 1% Q is a
reasonable cutoff condition, but it should be realized that the
number of Q clones is a very imprecise indicator of the actual
number of assembly errors. Q clones may be caused by F+
overlaps [9]; however, the number of Q clones produced by a
given F+ overlap varies greatly depending on random
circumstances. A F+ overlap causing two contigs to be
incorrectly merged on their ends may not produce any Q
clones, whereas a F+ overlap causing contig A to be incorrectly
incorporated into a central point of contig B will generally result
in many Q clones because the clones from contig A will not
align to the CB map constructed from the B clones; see
Soderlund et al. [9] for further explanation. There may also be a
few Q clones in a contig as a result of error in the fingerprints,
bands incorrectly called shared due to the tolerance, repetitive
bands, and the approximate nature of the FPC algorithm; in
these cases, the basic ordering of the clones is still correct but
the positions of the endpoints are less precise.

Because of the difficulty in determining one ideal cutoff
condition, we simulated three different ones. The first cutoff
condition, referred to as “5% chimeric,” was found by raising
the cutoff by a factor of 5 as long as the number of chimeric
contigs was still less than 5% of the total. The second cutoff
condition, referred to as the “first F+,” is found by raising the
cutoff by a factor of 5 until a F+ is found. The third condition is
the “1% Q” of Xu et al., computed by raising the cutoff by a
factor of 5 as long as the number of Q was still less than 1% of
the total. The first two conditions use the underlying sequence
data to detect the F+ overlaps and chimeric contigs. The third
condition does not use information from the underlying
sequence, but instead uses the FPC heuristic of Q clones. As
described under Materials and methods, our simulation
automatically tried different cutoffs and evaluated the results,
hence avoiding the possibility of human error. Xu et al. also
used a cutoff condition of “no Q’s,” which we did not use since
it is too dependent on random factors, as mentioned above.

Automatic simulation

We have performed simulations of the same fingerprinting
methods studied in [1], using 13 different sequenced chromo-
somes from four different species (Arabidopsis, rice, fly,
human). The simulations were carried out using a fully

automated system, which required a sequence as its only
input. For each chromosome, four levels of clone coverage were
simulated (5%, 8x, 10%, 15x), and two different random clone
libraries were generated for each coverage to control for random
factors of library selection. The simulated BACs were then
digested in silico for the five different fingerprinting methods
(see Materials and methods for details). For all 13 chromo-
somes, the gel lengths and our tolerances were used, as
described in Table 1; in addition, the tolerances of Xu et al. were
also tested for the 3 chromosomes studied in that paper.

Since the cutoff condition controls for erroneous contigs, the
number of contigs determines the success of the assemblies, in
that fewer contigs are better. The principal results of our
simulations are contained in Table 2, which shows that for 32
cases at 10x coverage, the 5¢ method performed best in 13
cases, 4e performed best in 7 cases, Se and 4e tied in 9 cases,
and the remaining methods scored best (or tied) in only 5 cases

Table 2
Number of contigs obtained in simulations for 13 chromosomes at 10x
simulated coverage, for two different randomly generated clone libraries

Chromosome Lib le 2¢ 3e 4e Se
Arab 1 1 25 22 21 21 21
2 27 28 42 41 41
Arab 2 1 21 20 15 11 2
2 22 11 5 6 3
Arab 2 (Xu Tol)?* 1 21 20 16 11 2
2 22 11 7 6 3
Arab 4 1 19 16 5 4 4
2 19 22 4 3 3
Arab 4 (Xu Tol)* 1 19 16 18 4 8
2 19 22 21 3 8
Fly 2L 1 21 11 5 3 3
2 30 24 9 5 3
Fly 3L 1 26 24 12 5 3
2 22 20 6 3 3
Human 18 1 106 70 22 14 13
2 102 77 36 14 14
Human 19 1 45 123 22 41 41
2 37 129 61 41 41
Human 20 1 33 72 29 22 21
2 63 78 29 21 21
Human 21 1 39 40 21 11 16
2 49 31 18 8 17
Human 22 1 45 66 41 38 21
2 46 86 21 21 21
Human 22 (Xu Tol)* 1 45 66 44 22 21
2 46 86 21 21 21
Rice 1 1 56 47 21 21 20
2 67 56 35 24 22
Rice 2 1 47 29 13 7 9
2 39 33 8 7 7
Rice 3 1 66 37 12 4 3
2 46 41 14 10 10
No. of best 2 0 3 16 24

Assemblies were carried out using the “5% chimeric” cutoff condition, as
described in the text. The best result for each row is in boldface (both results are
in bold in case of a tie), and the bottom row indicates the total number of runs for
which each method was best (or tied). Full data, including numbers of F+/F—
overlaps, chimeric contigs, Q clones, and singletons, for these and many
additional runs are available at (http://www.agcol.arizona.edu/software/fpc/
sim).
* Used the tolerances for 2e—5e suggested by Xu et al.
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altogether. The 4e and 5e¢ methods therefore performed
significantly better than the other three, and this finding was
duplicated for all other coverages and for both of the other two
cutoff conditions (additional data available at http://www.agcol.
arizona.edu/software/fpc/sim).

Xu et al. tested three chromosomes and a concatenation of
the three chromosomes and presented the accumulation of the
results from four coverages, which is shown in Table 3. Also
shown in Table 3 is the accumulation of our 16 datasets using
the same four coverages. The “map score” was defined by Xu et
al. to be a combination of the number of F+ overlaps, F—
overlaps, Q clones, chimeric contigs, and total contigs; we do
not feel that the map score provides accurate rankings because
both the number of Q’s and the number of F+ overlaps may vary
widely between maps that have equal numbers of chimeric
contigs. Since a single map score seems unworkable, we feel
that the best way to evaluate mapping technologies is to seek
minimum contig count subject to a fixed limit on the error. In
Table 3, the results of the map score and number of contigs are
shown. Xu et al. always ranked 2e first, and 5e ranked third,
fourth, and fifth. Our simulations ranked 5e first based on
number of contigs and second based on the map score; our 2e
always ranked third, fourth, or fifth.

Xu et al. provided detailed results from human chromosome
22 (see Table 1 of [1]). For a 10x coverage and using the 1% Q
cutoff condition, they determined that a 1x10~? cutoff should
be used for both 2e and Se. We used their tolerances and their
cutoff of 1x10°°, and the results were very different. For
example, counting the number of (contigs, F—, F+, chimeric,
Q’s) for the 2e method, Xu et al. counted (31, 0, 3, 1, 1) and we
counted (79, 102, 112, 1, 1); for the 5e method, Xu et al.
counted (30, 0, 8, 1, 14) and we counted (1, 2, 77,072, 1, 1462).
Note that they computed the same cutoff for both 2e and Se
using the 1% Q cutoff condition, which is surprising as the 5e
method generally uses a much lower cutoff; for example, when
we ran this simulation with the 1% Q cutoff condition, it found
5% 10" ? for the 2e method and 1 x 10~ for the 5e method. For
the complete results of this study, see http://www.agcol.arizona.
edu/software/fpc/sim/noerror/chr22 . html.

Table 3

Comparison of rankings
Cutoff condition Scoring scheme Comparison

Xu et al. No Q’s Map score® 2e>3e>1e>4e>5e
No Q’s By contigs® 2e>3e>4e>1e>5¢e
1% Q’s Map score 2e>3e>5e>1e>4e
1% Q’s By contigs 2e>4e>3e>5e>le

Nelson et al. 1% Q’s Map score Se>4e>3e>1e>2e
1% Q’s By contigs Se>4e>3e>2e>le
5% chimeric Map score 4e>5e>1e>2e>3e
5% chimeric By contigs Se>4e>3e>1e>2e
Ist F+ Map score 4e>5e>1e>2e>3e
Ist F+ By contigs Se>4e>1e>3e>2e

The first set is from Xu et al. [1] and the second set contains the results of this
paper.

# Map score is a combined score of the number of contigs, F+ overlaps, F—
overlaps, chimeric contigs, and Q clones, as defined by Xu et al.

® The results are scored by the number of contigs.

Table 4
Reduction in contig number with increasing clone coverage

le 2e 3e 4e Se
5x 100% 100% 100% 100% 100%
8x 64% 64% 66% 50% 52%
10% 49% 50% 51% 38% 38%
15% 28% 30% 34% 27% 27%

For each chromosome and method, the contig numbers at each coverage level
(using the “5% chimeric” cutoff condition) were converted to a percentage of the
5x value, and the results for all chromosomes were averaged to compute the
entries.

It is also reported in [1] that increasing coverage beyond 10x
does not improve the assemblies, but our data do not support
this conclusion. As shown in Table 4, we found a steady
reduction in contig number with increasing coverage for all
methods, with 5e in particular forming on average 28% fewer
contigs at 15% than at 10x.

Discussion

In a recent paper, Xu et al. [1] studied five different
fingerprinting methods using both simulations and laboratory
experiments. These authors arrived at two very unexpected
conclusions for the simulated results: (a) the best fingerprinting
method was the 2e method, despite the fact that it produces less
information about the clones than the 3e, 4e, or Se, and (b)
coverage above 10x makes the assembly worse rather than
better. Since physical mapping projects could base the choice of
fingerprinting strategy on these assumptions, it is essential that
these results are validated. As the code and data from their
simulations were not available, we created our simulations as
close as possible to their published description. Table 3 shows
their results compared to ours, in which they consistently find
the 2e is better than the S5e, and we consistently find the
opposite. These extreme differences cannot be accounted for by
implementation variations, which are discussed below.

We used the sequence from Arabidopsis chromosome 2,
Arabidopsis chromosome 4, and human chromosome 22, as
was used for the simulation by Xu et al. There are undoubtedly
minor differences in the sequences, but considering that the
sequences have been near finished since 1999 [14—16], it is
doubtful they have changed enough to cause such radically
different results. We created our simulated BACs in the same
size range as theirs, and we both randomly selected the clones.
A different random set of clones can make some difference in
the occasional situation, for example, the difference between
each two sets of clones for a given chromosome in Table 2; as is
obvious, it does not radically change the results.

Simulation results will vary based on variations in the
tolerance, gel length, and cutoff. As shown in Table 2, we used
the same tolerances as Xu et al. on the three chromosomes that
they analyzed; the one difference is with agarose, discussed
below. Since they did not specify their gel lengths, we cannot be
sure that we are using the same ones as they did. But since we
computed the gel lengths based on their minimum and
maximum size bands, they should be the same. By using the
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1% Q cutoff condition (data available online), the cutoffs used
should have been similar since they produced contigs with the
same proportion of error. Hence, it is difficult to explain the
large differences in results as being due to variations in
parameters.

For 1e, we used migration rates with fixed tolerance, whereas
they used sizes with a variable tolerance. By using migration
rates, we were able to use a fixed tolerance for all methods.
Also, the variable tolerance is not linear in the sizes, and it is not
known exactly how to set it. For this reason, and since migration
rates are the relevant variable for analysis using Image software,
agarose fingerprinting projects generally use migration rates.

We observed significant discrepancies between our in silico
digestions and theirs for both the 3e method and the 4e method.
For the 3e method, we obtained 47 bands/clone on average (for
human chromosome 22) compared to 71.7 reported in their
Table 1. Our value seems more reasonable since it is close to
that of the nearly identical 2e method; indeed, the purpose of the
extra, unlabeled BamHI digestion in 3e is unclear to us. Also,
for the 4¢ method, we obtained 109 bands/clone compared to
73.8 reported in [1]. These two discrepancies do not change the
conflicting results of whether 2e is better than Se or vice versa.

Another possible difference concerns their map score, which
uses the number of F— overlaps. An F— overlap occurs when
two clones overlap, but are not detected as overlapping based on
the FPC cutoff. If this is measured by any two clones that
overlap by at least one band, it results in many F— overlaps. If it
is measured by considering only the immediate adjacent clone,
it provides a more meaningful number as the immediate
adjacent F— overlap generally results in a contig splitting in two;
we use this second definition. In Table 1 of [1], the parameter
F— is reported as 0 for every entry, with no explanation. With
any definition of F—, there must be at least one for every contig
break that does not correspond to a physical gap in the clone
library. They assembled the same set of clones with different
cutoffs for the different methods, which resulted in different
numbers of contigs, but the same number (0) of F— overlaps,
which is not possible. Since our computations show F— overlaps
greater than 0, which we can easily compute from the
underlying sequence, our map score would be different from
theirs even if all else was the same.

Xu et al. consistently find 2e better than 4e and 5Se, and 3e
better than 5e; we consistently find the opposite. These are
radically different results. Logically, it would seem that 4e and
Se should perform better in simulations when there is no error
except that introduced by the tolerance, i.e., ignoring experi-
mental complexities. The reason for this is that 4e and Se are
approximately equivalent to several independent runs of 2¢ and
3e, using different enzymes, and with the information
combined. For example, each separate band set of a Se
fingerprint contains a number of bands similar to that of a 2e
fingerprint (33 vs. 30), has a similar total range of bands (465
vs. 715), and has considerably higher accuracy of band
measurement (tolerance 0.4 bp vs 2 bp). The information
content of a fingerprint is determined by these three factors, so
the information contained in one set of a Se fingerprint is at least
as great as that in a whole 2e fingerprint, and the combination of

all four sets in 5e provides four times as much information. A
similar analysis holds for 5e compared to 3e, and 4e compared
to 2e and 3e. The extra information in 5e and 4e should not
lead to a worse assembly unless either (i) the fingerprints
contain a higher proportion of error or (ii) the FPC assembly
process is not suited to these fingerprints. The first possibility
is certainly not the case in simulations; and the second
possibility also does not hold as demonstrated by the simu-
lations reported here.

In addition to a difference in the best method, our results also
differed on the optimal coverage. Xu et al. found that as the
number of clones increased from 10x to 15x and a 1% Q cutoff
condition was used, there was not a significant reduction in
contigs, and sometimes the number even increased. We found
the opposite, i.c., contig number decreases significantly while
the number of Q’s remains beneath the 1% threshold. Never-
theless, it is the case that higher coverage levels are likely to
generate more Q clones overall, since as the coverage increases,
F+ overlaps are more likely. Since a F+ generally results in
many Q clones, this situation is usually detected by FPC and can
be fixed with a function called the “DQer.” Hence, it is always
beneficial to increase coverage when possible.

Though the focus of this study is on the differences between
our simulation results, we note that laboratory experiments
were also reported in Table 2 of [1], in which they found that 2e
is superior to 3e and Se. There are several puzzling aspects to
these data. First, the clones were drawn from one contig of a
physical map previously constructed using the 2e method
[17,18], so it is surprising that the 2e method is reported to
assemble into at least nine contigs from the same 157 clones.
Furthermore, it is reported that the Se method with cutoff
1x10"? also assembles into nine contigs, but taking into
account the Bonferroni correction for 157 clones one would
expect more than 100 false positives with such a low cutoff, so
that all clones should assemble into one contig (and in fact the
Bonferroni correction generally underestimates the number of
false positives because bands are not distributed uniformly [5]).
Last, F— is again reported as 0 for all entries in Table 2 [1],
without explanation.

We briefly report our experience with laboratory results
comparing agarose with a variation of HICF. Nelson et al. [7]
assembled two maize FPC maps with the same set of clones,
one using the agarose method and one using a variation of HICF
very similar to the 4e and Se methods. The bands for the agarose
method were manually selected, which can often lead to a very
poor map; but in the case of the maize agarose map, two expert
band-callers performed all the manual band selection. As a
result, the agarose fingerprints for the maize map are of very
high quality, with an average 6% error per clone. The HICF
method was run on a sequencing machine by which the bands
are automatically selected, and the fingerprints had an average
12.5% error per clone. As described in [7], the HICF method
produced 2393 high-quality contigs and the agarose produced
6488 high-quality contigs.

Finally, as noted previously, no error modeling was used
either in our simulations or in those of [1]. HICF projects
studied to date have had greater error per fingerprint (i.e., more
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F+ and F— bands) than seen in agarose projects, but additional
simulation data available on our Web site, along with the results
from the maize whole-genome project [7], show that HICF
remains superior to agarose despite the error. However, the
simulation with error also shows that the precision of clone
coordinates is greatly improved by reduced error, and fewer
contigs are formed at the same cutoff values, so that if
substantially lower error could be demonstrated for one variant
of HICF, then that variant would be preferable even at higher
cost. Hence, a systematic study of the error rates of different
HICF techniques and laboratory protocols would be very
beneficial.

Materials and methods
Genome sequences

The Arabidopsis chromosomes (build 1/21/04) were downloaded from
http://www.arabidopsis.org, fly (release 4.3) from http:/www.flybase.org, rice
(IRGSP version 4.0) from http://rgp.dna.aftrc.go.jp/IRGSP/Build4/build4.html,
and human from GenBank (Accession No. NC_000001-NC_000024, latest
version as of 5/23/06).

Simulation procedure

Our automated simulation pipeline takes as input a chromosome sequence
and then performs the following steps:

1. Run a Perl script to create simulated 5%, 8%, 10x, and 15% clone libraries of
average insert size 150 kb (30 kb), by listing all possible clones (i.e., pairs
of HindlII cut sites separated by at least 120 kb and not more than 180 kb)
and picking the requisite number at random. For each chromosome
sequence, two distinct library sets were created using different seeds for
the random number generator.

2. Run a Perl script to digest the clones in each simulated library in silico
for each fingerprinting method, retaining band size ranges as specified in
Table 1.

3. For all datasets, run a Perl script that iteratively runs FPC on the dataset
using a binary search on the cutoff to locate the largest value at which the
assembly meets the cutoff condition. A simulation mode was added to FPC
to enable automated generation of the cutoff condition results for each trial
assembly. A remark is added to each clone with its real coordinates; hence,
FPC can easily compute the false positives, false negatives, and chimeric
contigs.

4. Run a Perl script to generate a Web page of the results.

The software implementing this pipeline, along with additional data, is
available at http://www.agcol.arizona.edu/software/fpc/sim.
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