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ABSTRACT 38 

 39 

Background: Plants can transmit somatic mutations and epimutations to offspring, 40 

which in turn can affect fitness. Knowledge of the rate at which these variations arise is 41 

necessary to understand how plant development contributes to local adaption in an eco-42 

evolutionary context, particularly in long-lived perennials.  43 

Results: Here, we generated a new high-quality reference genome from the oldest 44 

branch of a wild Populus trichocarpa tree with two dominant stems which have been 45 

evolving independently for 330 years. By sampling multiple, age-estimated branches of 46 
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this tree, we used a multi-omics approach to quantify age-related somatic changes at 47 

the genetic, epigenetic and transcriptional level. We show that the per-year somatic 48 

mutation and epimutation rates are lower than in annuals and that transcriptional 49 

variation is mainly independent of age divergence and cytosine methylation. 50 

Furthermore, a detailed analysis of the somatic epimutation spectrum indicates that 51 

transgenerationally heritable epimutations originate mainly from DNA methylation 52 

maintenance errors during mitotic rather than during meiotic cell divisions.  53 

Conclusion: Taken together, our study provides unprecedented insights into the origin 54 

of nucleotide and functional variation in a long-lived perennial plant. 55 

 56 

BACKGROUND 57 

 58 

The significance of somatic mutations, i.e., variations in DNA sequence that occur after 59 

fertilization, in long-lived plant and animal species have been a point of debate and 60 

investigation for the past 30 years [1–4]. It has been hypothesized that the evolutionary 61 

consequences of such mutations are likely even more profound in woody perennial 62 

plants, where undifferentiated meristematic cells produce all above-ground and below-63 

ground structures. As meristems undergo constant cell division throughout the lifetime 64 

of a plant, somatic mutations arising in meristems may result in genetic differences 65 

being passed onto progeny cells [5–8]. The accumulation of somatic mutations can thus 66 

lead to genetic and occasionally also phenotypic divergence among vegetative lineages 67 

within the same individual. In trees, for instance, different branches have been shown to 68 

differ in their responses to pest and pathogen attack, alternate reactions to drought 69 
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and/or nutrient availability, or dissimilar demands for photosynthate material, even 70 

within the same individual [9]. Beyond the impact of point mutations and small 71 

insertions/deletions on gene function, alterations in chromatin structure and DNA 72 

methylation might also impact gene expression variation.  73 

 74 

Phenotypic variation has been attributed to somatic mutations in several perennial 75 

plants, including the derivation of Nectarines in peach [10] and the origin of modern 76 

grape cultivars (Vitis vinifera L.) [11]. In Populus tremuloides, somatic mutations have 77 

been hypothesized as the cause for variation in DNA markers among individual ramets 78 

of a single genotype [12]. Initial attempts to demonstrate within-tree mosaicism using 79 

genetic markers [13], showed at low-resolution that the degree of intra-tree variability 80 

was positively correlated with the physical distance between sampled branches. More 81 

recently, work in oak (Quercus rubur) has documented variation in DNA sequence 82 

among an independent sampling of alternate branches from a single genotype [14, 15]. 83 

They estimated a fixed mutation rate of 4.2 - 5.2 x 10-8 substitutions per locus per 84 

generation, which is only within one order of magnitude of the rate observed in the 85 

herbaceous annual plant Arabidopsis thaliana [16]. These results are consistent with an 86 

emerging hypothesis that the per-unit-time mutation rate of perennials is much lower 87 

than in annuals to delay mutational meltdown [17, 18] and this lower rate is 88 

accomplished by limiting the number of cell divisions between the meristem and the 89 

new branch [19]. Additional recent studies have also revealed similar rates of 90 

spontaneous mutations in a range of species including perennials [18]. Regardless of 91 

the rate of mutation, the frequency of deleterious mutations in woody plants is high, 92 
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which is hypothesized to reduce survival of progeny resulting from inbreeding and favor 93 

outcrossing as is observed in many forest trees [20, 21]. 94 

 95 

Similar to genetic mutations, phenotypic variation can be caused by epigenetic variation 96 

such as stable changes in cytosine methylation or epimutations [22]. Cytosine 97 

methylation is a covalent base modification that is inherited through both mitotic and 98 

meiotic cell divisions in plants [23]. It occurs in three sequence contexts, CG, CHG, and 99 

CHH (H = A, T, or C) and the pattern and distribution of methylation at these different 100 

contexts is predictive of its function in genome regulation [24]. Spontaneous changes in 101 

methylation independent of genetic changes can lead to phenotypic changes [25]. Well-102 

characterized examples in plants include the peloric phenotype in toadflax (Linaria 103 

vulgaris), the colorless non-ripening phenotype in tomato (Solanum lycopersicum), and 104 

the mantled phenotype in oil palm (Elaeis guineensis) [26–28].  105 

 106 

Once established, epimutations can stably persist or be inherited across generations. 107 

For example, the reversion rate from the colorless non-ripening epimutant allele to wild 108 

type is about 1 in 1000 per generation in tomato [27]. Studies in A. thaliana mutation 109 

accumulation lines have documented that the vast majority (91-99.998%) of methylated 110 

regions in the genome are stably inherited across generations; only a small subset of 111 

the methylome shows variation among mutation accumulation lines [29–31]. Estimates 112 

in A. thaliana indicate that the spontaneous methylation gain and loss rates at CG sites 113 

are 2.56 x 10-4 and 6.30 x 10-4 per generation per haploid methylome, respectively [32]. 114 

Despite the wealth of knowledge about transgenerational methylation inheritance, very 115 
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little is known about somatic epimutations, especially in long-lived perennial species. 116 

Previous studies have been limited by resolution and time. Heer et al. observed no 117 

global methylation changes and no consistent variation in gene body methylation 118 

associated with growth conditions of Norway spruce [33]. Several studies have linked 119 

stress conditions to differential methylation in perennials but did not look at the stability 120 

of methylation after removing the stressor [34, 35]. One exception, Le Gac et al., 121 

identified environment-related differentially methylated regions in poplar, but only 122 

examined stability across six months [36]. 123 

 124 

Detailed insights into the rate and spectrum of somatic mutations and epimutations are 125 

necessary to understand how somatic development of long-lived perennials contribute 126 

to population-level variation in an eco-evolutionary context. Here we generated a new 127 

high-quality reference genome from the oldest branch of a wild Populus trichocarpa tree 128 

with two dominant stems which have been evolving independently for approximately 129 

330 years. By sampling multiple, age-estimated branches of this tree, we used a multi-130 

omics approach to quantify age-related somatic changes at the genetic, epigenetic and 131 

transcriptional level. Our study provides the first quantitative insights into how nucleotide 132 

and functional variation arise during the lifetime of a long-lived perennial plant. 133 

 134 

RESULTS 135 

 136 

Experimental design for the discovery of somatic genetic and epigenetic variants 137 

 138 
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A stand of trees was identified near Mount Hood, Oregon and vegetative samples were 139 

collected from over 15 trees as part of an independent study. Of these trees, five were 140 

chosen for subsequent analysis and five branches of each tree were identified (Fig. S1). 141 

For each branch, the stem age was determined by coring the main stem at breast 142 

height and where the branch meets the stem and the branch age was determined by 143 

coring the base of the branch (Fig.1 and Fig. S2). Although 25 branches in total were 144 

initially sampled, six were excluded from analysis because they were epicormic and age 145 

estimates could not be determined. Two other branches had incomplete cores, but ages 146 

could be estimated based on radial diameter.  147 

 148 

From this, we were specifically interested in tree 13 and tree 14 (Fig. 1). Originally 149 

identified as two separate genotypes, they are actually two main stems of a single basal 150 

root system and trunk. Both tree 13 and tree 14 originated as stump sprouts off of an 151 

older tree that was knocked down over 300 years ago. Attempts to determine the total 152 

age were unsuccessful. However, statistical estimates based on molecular-clock 153 

arguments and a regression analysis of diameter to age suggest that the tree is 154 

approximately 330 years old (Shayary et al. 2019, co-submission). 155 

 156 

Leaf samples were collected from eight age-estimated branches for multi-omics 157 

analysis for tree 13 and tree 14. The oldest branch of tree 14 (branch 14.5) was used 158 

for genome assembly of Populus trichocarpa var. Stettler. Genome resequencing was 159 

performed for all branches to explore intra- and inter-tree genetic variation. PacBio, 160 
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MethylC-seq, and mRNA-seq libraries were constructed for the branches of tree 13 and 161 

tree 14 to explore structural, methylation, and transcriptional variation, respectively. 162 

 163 

Genome assembly and annotation of Populus trichocarpa var. Stettler 164 

We sequenced the P. trichocarpa var. Stettler using a whole-genome shotgun 165 

sequencing strategy and standard sequencing protocols. Sequencing reads were 166 

collected using Illumina and PacBio. The current release is based on PacBio reads 167 

(average read length of 10,477 bp, average depth of 118.58x) assembled using the 168 

MECAT CANU v.1.4 assembler [37] and subsequently polished using QUIVER [38]. A 169 

set of 64,840 unique, non-repetitive, non-overlapping 1.0 kb sequences were identified 170 

in the version 4.0 P. trichocarpa var. Nisqually assembly and were used to assemble 171 

the chromosomes. The version 1 Stettler release contains 392.3 Mb of sequence with a 172 

contig N50 of 7.5 Mb and 99.8% of the assembled sequence captured in the 173 

chromosomes. Additionally, ~232.2 Mb of alternative haplotypes were identified. 174 

Completeness of the final assembly was assessed using 35,172 annotated genes from 175 

the version 4.0 P. trichocarpa var. Nisqually release (jgi.doe.gov). A total of 34,327 176 

(97.72%) aligned to the primary Stettler assembly.  177 

The annotation was performed using ~1.4 billion pairs of 2x150 stranded paired-end 178 

Illumina RNA-seq GeneAtlas P. trichocarpa var. Nisqually reads, ~1.2 billion pairs of 179 

2x100 paired-end Illumina RNA-seq P. trichocarpa var. Nisqually reads from Dr. Pankaj 180 

Jaiswal, and ~430 million pairs of 2x75 stranded paired-end Illumina var. Stettler reads 181 

using PERTRAN (Shu, unpublished) on the P. trichocarpa var. Stettler genome. About 182 

~3 million PacBio Iso-Seq circular consensus sequences were corrected and collapsed 183 
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by a genome-guided correction pipeline (Shu, unpublished) on the P. trichocarpa var. 184 

Stettler genome to obtain ~0.5 million putative full-length transcripts. We annotated 185 

34,700 protein-coding genes and 17,314 alternative splices for the final annotation. 186 

Because of the extensive resources included in the annotation, 32,330 genes had full-187 

length transcript support. 188 

Identification and rate of somatic genetic variants 189 

Leaf samples from the five trees were sequenced to an average depth of ~87x (~60-190 

164x) using Illumina HiSeq. Roughly 88% of the high-quality reads map to the genome 191 

and about 98.6% of the genome is covered by at least one read, and genome coverage 192 

(~8-500x) used for SNP calling was about 97%. The initial number of SNPs per tree 193 

(mutation on any branch) varied between 44,000 and 152,000, which is populated with 194 

many false positives due to coverage, sequencing and alignment errors, etc. Applying 195 

an additional filter requiring >20x coverage per position and requiring coverage in all 196 

branches reduced the total amount genome space queried to ~40 Mb. Furthermore, 197 

since most of the genome (99.9%) is homozygous at every base pair, a somatic 198 

mutation will almost always result in a change from a homozygous to heterozygous site. 199 

Restricting the analysis to sites that change from homozygous to heterozygous, we 200 

identified 118 high-confidence SNPs in tree 13 and 143 high-confidence SNPs in tree 201 

14 (Tables S1-2). 202 

Over two-thirds of the SNPs in tree 13 and tree 14 were transition mutations, with C-G 203 

to T-A mutations accounting for over 54% of the SNPs (Fig. 2a). Of the transversion 204 

mutations C-G to G-C was the least common (3.8%) whereas C-G to A-T was most 205 
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common (10%). Nearly half of the SNPs (46%) occurred in transposable elements and 206 

about 10% occur in promoter regions (Fig. 2b and Tables S1-S2). SNPs are significantly 207 

enriched in TEs and depleted in promoter regions genome-wide (Chi-square, df = 3, P < 208 

0.001) 209 

To obtain an estimate of the rate of somatic point mutations from these SNP calls, we 210 

developed mutSOMA (https://github.com/jlab-code/mutSOMA), a phylogeny-based 211 

inference method that fully incorporates knowledge of the age-dated branching topology 212 

of the tree (see Methods and Supplementary Text). Using this approach, we find that 213 

the somatic point mutation rate in poplar is 1.33 x 10-10 (95% CI: 1.53 x 10-11 - 4.18 x 10-214 

10) per base per haploid genome per year (Table S3). Generation time can refer to two 215 

measurements—time from seed to production of first seeds and the organism’s lifespan. 216 

In annual plants, these values can be considered the same; however, this is not the 217 

case for perennials. Assuming 15 years from seed to production of first seeds [39], the 218 

poplar seed-to-seed generation mutation rate would be approximately 1.99 x 10-9. This 219 

is slightly lower than the per-generation (seed-to-seed) mutation rate observed in the 220 

annual A. thaliana (7 x 10-9) [16]. Next looking at the lifespan per-generation rate and 221 

assuming a maximum age of 200 years [40], the lifespan per-generation rate is 2.66 x 222 

10-8. This estimate is slightly lower than the per-generation somatic mutation rate 223 

recently reported in oak (4.2 - 5.8 x 10-8) [14]. 224 

 225 

To analyze structural variants (SV) between haplotypes and somatic SV mutations, 226 

PacBio libraries were generated for the eight branches from tree 13 and tree 14 (Fig. 1). 227 

For each branch, four PacBio cells were sequenced generating an average output of 228 
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3.05 million reads and 28.3 Gb per branch (Table S4). After aligning the PacBio output 229 

to the P. trichocarpa var. Stettler genome, calling SVs larger than 20 bp, and filtering, 230 

we identified ~10,466 deletions, ~6,702 insertions, 645 duplications, and three 231 

inversions between the reference Stettler haplotype and the alternative haplotype 232 

(Table S5). Upon manual inspection of read mapping for a representative subset of 233 

SVs, 72.6% of SVs have strong support where multiple aligned reads support the SV 234 

type and size (Table S6). Deletions and duplications are significantly enriched in 235 

tandem repeat sequence and depleted in genic sequence (Kolmogorov-Smirnov two-236 

sample test, P value < 2.2 x 10-16). Furthermore, deletions generally have less genic 237 

sequence and more tandem repeat sequence than do duplications (Fig. S3). Several of 238 

the detected SVs are large, with 11 deletions and five duplications greater than 50 kb 239 

(Table S5) with genic sequence content ranging from 0.0% to 23.7%. Comparisons of 240 

the branches from tree 13 and tree 14 did not identify instances of somatic SV mutation. 241 

 242 

Identification and rate of somatic epigenetic variants  243 

 244 

To explore somatic epigenetic variation associated with changes in DNA methylation, 245 

we generated whole-genome bisulfite sequencing libraries from the branch tips of tree 246 

13 and tree 14 (Fig. 1). The average genome coverage for the samples was ~41.1x and 247 

sequence summary statistics are located in Table S7. Genome-wide methylation levels 248 

were similar across all samples with 36.61% mCG, 19.02% mCHG, and 2.07% mCHH% 249 

(Fig. S4) [41], indicating that global methylation levels are relatively stable across 250 

branches. Nonetheless, we observed significant age-dependent DNA methylation 251 
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divergence between branches in CG and CHG contexts, both at the level of individual 252 

cytosines as well as at the level of regions, i.e. clusters of cytosines (Fig. 3a-b, Fig. S5, 253 

and Table S8). These age-dependent divergence patterns indicate that spontaneous 254 

methylation changes (i.e. epimutations) are cumulative across somatic development 255 

and thus point to a shared meristematic origin (Shahryary et al. 2019, co-submission). 256 

 257 

To obtain an estimate of somatic epimutation rates, we applied AlphaBeta (Shahryary et 258 

al. 2019, co-submission). The method builds on our previous approach for estimating 259 

‘germline’-epimutation in mutation accumulation (MA) lines [32], except here we treat 260 

the tree branching topology as an intra-organismal phylogeny and model mitotic instead 261 

of meiotic inheritance. Focusing first on cytosine-level epimutations, we estimated that 262 

at the genome-wide scale spontaneous methylation gains in contexts CG and CHG 263 

occur at a rate of 1.8 x 10-6 and 3.3 x 10-7 per site per haploid genome per year, 264 

respectively; whereas spontaneous methylation losses in these two sequence contexts 265 

occur at a rate of  5.8 x 10-6 and 4.1 x 10-6 per site per haploid genome per year. Based 266 

on these estimates, we extrapolate that the seed-to-seed per-generation epimutation 267 

rate in poplar is about 10-5 and the lifespan per-generation rate is 10-4. Remarkably, 268 

these estimates are very similar to those reported in A. thaliana MA lines [32]. The 269 

observation that two species with such different life history traits and genome 270 

architecture display very similar per-generation mutation and epimutation rates 271 

suggests that the rates themselves are subject to strong evolutionary constraints. 272 

 273 
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In addition to global epimutation rates, we also estimated rates for different genomic 274 

features (mRNA, promoters, intergenic, TEs). This analysis revealed highly significant 275 

rate differences in the CG and CHG context between genomic features, with mRNAs 276 

showing the highest and TEs the lowest combined rates (Fig. 3c-j). Interestingly, the 277 

ordering of the magnitude of the mRNA, promoter, and intergenic rates is similar to that 278 

previously observed in A. thaliana MA lines [32]. The differences in rates at local 279 

genomic features likely reflect the distinct DNA methylation pathways that function on 280 

these sequences (RNA-directed DNA methylation, CHROMOMETHYLASE3, 281 

CHROMOMETHYLASE2, DNA METHYLTRANSFERASE1, etc.). For example, the high 282 

rate of epimutation losses in mRNA relative to other features (Fig. 3g-h) could reflect the 283 

activity of CMT3-mediated gene body DNA methylation [42, 43]. The observation that 284 

the epimutation rates of these features is consistent between A. thaliana MA lines (>60 285 

generations) and this long-lived perennial (within a single generation) seems to imply 286 

that epimutations are not a result of biased reinforcement of DNA methylation during 287 

sexual reproduction or environment/genetic variation, but instead a feature of DNA 288 

methylation maintenance through mitotic cell divisions. 289 

 290 

Assessment of spontaneous differentially methylated regions 291 

 292 

Differentially methylated regions are functionally more relevant than individual cytosine-293 

level changes, as in certain cases they are linked to differential gene expression and 294 

phenotypic variation [26–28, 44, 45]. To explore the extent of differentially methylated 295 

regions (DMRs) that spontaneously arise in these trees we searched for all pairwise 296 
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DMRs between all branches. In total, we identified 10,909 DMRs that possessed 297 

changes in all sequence contexts (CG, CHG and CHH - C-DMRs). Together they 298 

constitute approximately 1.69 Mb of the total 167.4 Mb (~1%) of methylated sequences 299 

in the Stettler genome and they reveal age-dependent accumulation (Fig. 4a). Most 300 

DMRs occur in intergenic regions (56.7%), but a significant enrichment of DMRs were 301 

detected within two kilobases from the transcriptional start site of genes compared to 302 

methylated regions as a whole (Fig. 4b) (Fisher’s exact test, one-sided, P value < 303 

0.001). 304 

Given the heterozygous nature of wild P. trichocarpa, we explored allelic methylation 305 

changes. After filtering for sufficient coverage and methylation change, we assigned the 306 

pseudo-allele state of each branch at 4,488 DMRs. Possible states were homozygous 307 

unmethylated, heterozygous, and homozygous methylated. In each sample, 43.0% of 308 

DMRs, on average, were categorized as homozygous methylated (Fig. S6). 309 

Interestingly, the youngest branches, 13.1 and 14.1 have about 10% more homozygous 310 

methylated pseudo-alleles than the other branches (51.1% vs 41.7%). Next, we looked 311 

at the number of changes of pseudo-allele states. This is expected as DMRs were 312 

identified as having different methylation levels in the samples. On average, there are 313 

3.02 state changes for each DMR with 94.4% of DMRs having one to five state changes 314 

(Fig. 4c). These data suggest that many of these regions are metastable, a common 315 

feature of epimutations in plants. 316 

 317 

An example of a region with one state change are the tree specific DMRs (Fig. 4d). In 318 

these regions, all branches of one tree are homozygous unmethylated and all branches 319 



 15 

of the other tree are homozygous methylated. This suggesting the methylation state 320 

change occurred shortly after the trees separated and remained stable throughout 321 

subsequent mitotic divisions. In contrast, we also identified highly variable regions with 322 

seven state changes, a change between each branch (Fig. 4e). Of the regions with two 323 

state changes, 150 have branch-specific state changes. For example, in Fig. 4f 324 

branches 13.1 to 13.3 are homozygous unmethylated, then it changes to homozygous 325 

methylated for branch 13.5, and changes again to homozygous unmethylated for 326 

branches 14.5 – 14.2. Similarly, in Fig. 4g, all branches except 14.5 are homozygous 327 

methylated and 14.5 has spontaneously lost methylation. 328 

 329 

We also used the identified C-DMRs (differential methylation in all cytosine sequence 330 

contexts) to obtain region-level epimutation rates. To do this, we established control 331 

regions (‘non-DMR’) with the same size distribution as observed for C-DMRs and used 332 

the methylation levels of all cytosines in each (non-)DMR to calculate methylation levels 333 

per region. Interestingly, this analysis shows that region-level epimutation rates are 334 

comparable to epimutation rates of single cytosines. Even though there are far fewer 335 

DMRs in comparison to epimutations at single cytosines, the similar rates are not too 336 

unexpected if one considers that the total ‘epimutable space’ for regions in the genome 337 

is much smaller than that for individual cytosines. In summary, these results might 338 

suggest that the mechanisms which underlie spontaneous differential methylation are 339 

the same for differential methylation in larger regions and at individual sites. 340 

 341 

Functional consequences of differential methylation on gene expression 342 
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 343 

To assess if age-related cytosine methylation changes have functional consequences, 344 

we performed mRNA-seq with three biological replicates for each branch of trees 13 345 

and 14. On average, each library had over ~55 million reads and 96.8% mapping to the 346 

P. trichocarpa var. Stettler genome (Table S9). We used DESeq2 to identify 347 

differentially expressed genes (DEGs) pairwise between branches [46] and identified a 348 

total of 2,937 genes. The P. trichocarpa var. Stettler genome has 34,700 annotated 349 

genes, so this differential expression gene set is 8.46% of all genes and 10.5% of 350 

expressed genes.  351 

 352 

Since the somatic accumulation of spontaneous methylation changes could affect gene 353 

expression, we asked if transcriptional divergence also increases as a function of tree 354 

age. We found that in contrast to somatic mutations and epimutations, the divergence 355 

between leaf transcriptomes is much more heterogeneous and displays only a weak 356 

and non-significant accumulation trend (Fig. 5a). This observation suggests that the 357 

accumulation of genetic and epigenetic changes are largely uncoupled from age-358 

dependent transcriptional changes in poplar, at least at the global scale.  359 

 360 

However, this global analysis does not rule out that DNA methylation changes at 361 

specific individual loci can have transcriptional consequences. To explore this in more 362 

detail, we analyzed DMRs proximal to DEGs, and correlated the methylation level of the 363 

DMR with the expression level of the gene. The correlation is positive when a higher 364 

methylation level in the DMR is associated with higher expression of the gene. 365 
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Regardless of where the DMR was located relative to the gene, we observed positive 366 

DMR-DEG correlations and negative DMR-DEG correlations. There was no bias for 367 

direction of correlation and genomic feature type (Fig. 5b).  368 

 369 

We further focused on four specific examples where DEG-DMR correlations were 370 

statistically significant (Fig. S7). Of these four, three of the DMRs occurred within two 371 

kilobases upstream of the transcription start site, and they have strong negative 372 

correlations (Fig. 5c). The DMR located in the untranslated region of a gene encoding a 373 

mitochondrial oxoglutarate/malate carrier protein was positively correlated with gene 374 

expression (Fig. 5d), although it remains unclear if this relationship is causal. 375 

 376 

Taken together, our transcriptome analysis indicates that gene expression changes in 377 

this poplar tree are largely independent of methylation at both the global and local scale 378 

except for a few rare examples. This observation is at least partly consistent with our 379 

model-based analyses, which suggest that somatic epimutations in this tree accumulate 380 

neutrally (Shahryary et al. 2019, co-submission). 381 

 382 

DISCUSSION 383 

 384 

Using a multi-omics approach, we were able to calculate the rates of somatic mutations 385 

and epimutations in the long-lived perennial tree P. trichocarpa. Consistent with the per-386 

unit-time hypothesis, we find that the per-year genetic and epigenetic mutation rates in 387 

poplar are lower than in A. thaliana, which is remarkable considering that the former 388 
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experienced hundreds of years of variable environmental conditions. This observation 389 

supports the view that long-lived perennials may limit the number of meristematic cell 390 

divisions during their lifetime and that they have evolved mechanisms to protect these 391 

cell types from the persistent influence of environmental mutagens, such as UV-392 

radiation. Interestingly, in contrast to the observed differences in per-year mutation and 393 

epimutation rates, our analysis reveals strong similarities in the per-generation rates 394 

between these two species. This close similarity further suggests that the per-395 

generation rates of spontaneous genetic and epigenetic changes are under strong 396 

evolution constraint, although it remains unclear from our experimental design how 397 

many of these (epi)mutations will be successfully transferred to the next generation. 398 

 399 

The results presented here are most certainly an underestimate of the actual rate. This 400 

may be a result of the sampling biased used in this study, as we were only able to 401 

sample surviving branches and identify mutations that occurred early enough that they 402 

are present in the majority of the cells sampled in the tissues profiled. Perhaps variable 403 

environmental conditions lower the epimutation rate by keeping the cells in sync, thus 404 

few differences can be observed. Alternatively, meristematic cells that give rise to the 405 

sampled tissues have highly reinforced and well-maintained DNA methylomes similar to 406 

observations in embryonic tissue [47–51]. Either scenario would imply that most of the 407 

identified epimutations are spontaneous in nature. Although the rate is different, the 408 

ordering in feature-specific epimutation rates is the same between poplar and A. 409 

thaliana, suggesting that this is a general pattern in plant genomes, which likely is 410 

derived from maintenance of DNA methylation through mitotic cell divisions. 411 



 19 

 412 

CONCLUSION 413 

 414 

Taken together, our study provides unprecedented insights into the origin of nucleotide, 415 

epigenetic, and functional variation in the long-lived perennial plant. 416 

 417 

 418 

METHODS 419 

 420 

Sample collection and age estimation 421 

 422 

The trees used in this study were located at Hood River Ranger District [Horse Thief 423 

Meadows area], Mt. Hood National Forest, 0.6 mi south of Nottingham Campground off 424 

OR-35 at unmarked parking area, 500’ west of East Fork Trail #650 across river, ca. 425 

45.355313, -121.574284 (Fig. S1). 426 

 427 

Cores were originally collected from the main stem and five branches from each of five 428 

trees in April 2015 at breast height (∼1.5 m) for standing tree age using a stainless-steel 429 

increment borer (5 mm in diameter and up to 28 cm in length). Cores were mounted on 430 

grooved wood trim, dried at room temperature, sanded and stained with 1% 431 

phloroglucinol following the manufacturer’s instructions (https://www.forestry-432 

suppliers.com/Documents/1568_msds.pdf). Annual growth rings were counted to 433 

estimate age. For cores for which accurate estimates could not be made from the 2015 434 
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collection, additional collections were made in spring 2016. However, due to difficulty in 435 

collecting by climbing, many of the cores did not reach the center of the stem or 436 

branches (pith) and/or the samples suffered from heart rot. Combined with the difficulty 437 

in demarcating rings in porous woods such as poplar Populus [52, 53], accurate 438 

measures of tree age or branch age were challenging (Fig. S2).  439 

 440 

Simultaneously with stem coring, leaf samples were collected from the tips of each of 441 

the branches from the selected five trees. Branches 9.1, 9.5, 13.4, 14.1, 15.1, and 15.5 442 

were too damaged to determine reasonable age estimates and were removed from 443 

analysis. Branch 14.4 and the stems of 13.1 and 13.2 were estimated by simply 444 

regressing the diameter of all branches and stems that could be aged by coring. 445 

 446 

Nuclei prep for DNA extraction 447 

 448 

Poplar leaves, that had been kept frozen at -80 °C, were gently ground with liquid 449 

nitrogen and incubated with NIB buffer (10 mM Tris-HCL, PH8.0, 10 mM EDTA PH8.0, 450 

100 mM KCL, 0.5 M sucrose, 4 mM spermidine, 1 mM spermine) on ice for 15 min. 451 

After filtration through miracloth, Triton x-100 (Sigma) was added to tubes at a 1:20 452 

ratio, placed on ice for 15 min, and centrifuged to collect nuclei. Nuclei were washed 453 

with NIB buffer (containing Triton x-100) and re-suspended in a small amount of NIB 454 

buffer (containing Triton x-100) then the volume of each tube was brought to 40 ml and 455 

centrifuged again. After careful removal of all liquid, 10 ml of Qiagen G2 buffer was 456 

added followed by gentle re-suspension of nuclei; then 30 ml G2 buffer with RNase A 457 
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(to final concentration of 50 mg/ml) was added. Tubes were incubated at 37 °C for 30 458 

min. Proteinase K (Invitrogen), 30 mg, was added and tubes were incubated at 50 °C 459 

for 2 h followed by centrifugation for 15 min at 8000 rpm, at 4 °C, and the liquid gently 460 

poured to a new tube. After gentle extraction with Chloroform / isoamyl alcohol (24:1), 461 

then centrifugation and transfer of the top phase to a fresh tube, HMW DNA was 462 

precipitated by addition of 2/3 volume of iso-propanol and re-centrifugation to collect the 463 

DNA. After DNA was washed with 70% ethanol, it was air dried for 20 min and dissolved 464 

thoroughly in 1x TE. 465 

 466 

Whole-genome sequencing 467 

 468 

We sequenced Populus trichocarpa var. Stettler using a whole-genome shotgun 469 

sequencing strategy and standard sequencing protocols. Sequencing reads were 470 

collected using Illumina and PacBio. Both the Illumina and PacBio reads were 471 

sequenced at the Department of Energy (DOE) Joint Genome Institute (JGI) in Walnut 472 

Creek, California and the HudsonAlpha Institute in Huntsville, Alabama. Illumina reads 473 

were sequenced using the Illumina HISeq platform, while the PacBio reads were 474 

sequenced using the RS platform. One 400-bp insert 2x150 Illumina fragment library 475 

was obtained for a total of ~349x coverage (Table S10). Prior to assembly, all Illumina 476 

reads were screened for mitochondria, chloroplast, and phix contamination. Reads 477 

composed of >95% simple sequence were removed. Illumina reads less than 75 bp 478 

after trimming for adapter and quality (q < 20) were removed. The final Illumina read set 479 

consists of 906,280,916 reads for a total of ~349x of high-quality Illumina bases. For the 480 
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PacBio sequencing, a total of 69 chips (P6C4 chemistry) were sequenced with a total 481 

yield of 59.29 Gb (118.58x) with 56.2 Gb > 5 kb (Table S11), and post error correction a 482 

total of 37.3 Gb (53.4x) was used in the assembly. 483 

 484 

Genome assembly and construction of pseudomolecule chromosomes 485 

 486 

The current release is version 1.0 release began by assembling the 37.3 Gb corrected 487 

PacBio reads (53.4x sequence coverage) using the MECAT CANU v.1.4 assembler [37] 488 

and subsequently polished using QUIVER v.2.3.3 [38]. This produced 3,693 scaffolds 489 

(3,693 contigs), with a scaffold N50 of 1.9 Mb, 955 scaffolds larger than 100 kb, and a 490 

total genome size of 693.8 Mb (Table S12). Alternative haplotypes were identified in the 491 

initial assembly using an in-house Python pipeline, resulting in 2,972 contigs (232.3 Mb) 492 

being labeled as alternative haplotypes, leaving 745 contigs (461.5 Mb) in the single 493 

haplotype assembly. A set of 64,840 unique, non-repetitive, non-overlapping 1.0 kb 494 

syntenic sequences from version 4.0 P. trichocarpa var. Nisqually assembly and aligned 495 

to the MECAT CANU v.1.4 assembly and used to identify misjoins in the P. trichocarpa 496 

var. Stettler assembly. A total of 22 misjoins were identified and broken. Scaffolds were 497 

then oriented, ordered, and joined together into 19 chromosomes. A total of 117 joins 498 

were made during this process, and the chromosome joins were padded with 10,000 499 

Ns. Small adjacent alternative haplotypes were identified on the joined contig set. 500 

Althap regions were collapsed using the longest common substring between the two 501 

haplotypes. A total of 14 adjacent alternative haplotypes were collapsed.  502 

 503 
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The resulting assembly was then screened for contamination. Homozygous single 504 

nucleotide polymorphisms (SNPs) and insertion/deletions (InDels) were corrected in the 505 

release sequence using ~100x of Illumina reads (2x150, 400-bp insert) by aligning the 506 

reads using bwa-0.7.17 mem [54] and identifying homozygous SNPs and InDels with 507 

the GATK v3.6’s UnifiedGenotyper tool [55]. A total of 206 homozygous SNPs and 508 

11,220 homozygous InDels were corrected in the release. Heterozygous SNP/indel 509 

phasing errors were corrected in the consensus using the 118.58x raw PacBio data. A 510 

total of 66,124 (1.98%) of the heterozygous SNP/InDels were corrected. The final 511 

version 1.0 improved release contains 391.2 Mb of sequence, consisting of 25 scaffolds 512 

(128 contigs) with a contig N50 of 7.5 Mb and a total of 99.8% of assembled bases in 513 

chromosomes. Plots of the Nisqually marker placements for the 19 chromosomes are 514 

shown in Fig. S8. 515 

 516 

Genome annotation 517 

 518 

Transcript assemblies were made from ~1.4 billion pairs of 2x150 stranded paired-end 519 

Illumina RNA-seq GeneAtlas P. trichocarpa Nisqually reads, ~1.2 billion pairs of 2x100 520 

paired-end Illumina RNA-seq P. trichocarpa Nisqually reads from Dr. Pankaj Jaiswal, 521 

and ~430M pairs of 2x75 stranded paired-end Illumina var. Stettler reads using 522 

PERTRAN (Shu, unpublished) on P. trichocarpa var. Stettler genome. About ~3M 523 

PacBio Iso-Seq circular consensus sequences were corrected and collapsed by 524 

genome guided correction pipeline (Shu, unpublished) on P. trichocarpa var. Stettler 525 

genome to obtain ~0.5 million putative full-length transcripts. 293,637 transcript 526 
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assemblies were constructed using PASA [56] from RNA-seq transcript assemblies 527 

above. Loci were determined by transcript assembly alignments and/or EXONERATE 528 

alignments of proteins from A. thaliana, soybean, peach, Kitaake rice, Setaria viridis, 529 

tomato, cassava, grape and Swiss-Prot proteomes to repeat-soft-masked P. trichocarpa 530 

var. Stettler genome using RepeatMasker [57] with up to 2-kb extension on both ends 531 

unless extending into another locus on the same strand. Gene models were predicted 532 

by homology-based predictors, FGENESH+[58], FGENESH_EST (similar to 533 

FGENESH+, EST as splice site and intron input instead of protein/translated ORF), and 534 

EXONERATE [59], PASA assembly ORFs (in-house homology constrained ORF finder) 535 

and from AUGUSTUS via BRAKER1 [60]. The best scored predictions for each locus 536 

are selected using multiple positive factors including EST and protein support, and one 537 

negative factor: overlap with repeats. The selected gene predictions were improved by 538 

PASA. Improvement includes adding UTRs, splicing correction, and adding alternative 539 

transcripts. PASA-improved gene model proteins were subject to protein homology 540 

analysis to above mentioned proteomes to obtain Cscore and protein coverage. Cscore 541 

is a protein BLASTP score ratio to MBH (mutual best hit) BLASTP score and protein 542 

coverage is highest percentage of protein aligned to the best of homologs. PASA-543 

improved transcripts were selected based on Cscore, protein coverage, EST coverage, 544 

and its CDS overlapping with repeats. The transcripts were selected if its Cscore is 545 

larger than or equal to 0.5 and protein coverage larger than or equal to 0.5, or it has 546 

EST coverage, but its CDS overlapping with repeats is less than 20%. For gene models 547 

whose CDS overlaps with repeats for more that 20%, its Cscore must be at least 0.9 548 

and homology coverage at least 70% to be selected. The selected gene models were 549 
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subject to Pfam analysis and gene models whose protein is more than 30% in Pfam TE 550 

domains were removed and weak gene models. Incomplete gene models, low 551 

homology supported without fully transcriptome supported gene models and short single 552 

exon (< 300-bp CDS) without protein domain nor good expression gene models were 553 

manually filtered out. 554 

 555 

SNP calling methods 556 

 557 

Illumina HiSeq2500 paired-end (2×150) reads were mapped to the reference genome 558 

using bwa-mem [54]. Picard toolkit was used to sort and index the bam files. GATK [55] 559 

was used further to align regions around InDels. Samtools v1.9 [61] was used to create 560 

a multi-sample mileup for each tree independently. Preliminary SNPs were called using 561 

Varscan v2.4.0 [62] with a minimum coverage of 21. 562 

 563 

At these SNPs, for each branch, we calculated the conditional probability of each 564 

potential genotype (RR, RA, AA) given the read counts of each allele, following SeqEM 565 

[63], using an estimated sequencing error rate of 0.01. We identified high-confidence 566 

genotype calls as those with a conditional probability 10,000x greater than the 567 

probabilities of the other possible genotypes. We identified potential somatic SNPs as 568 

those with both a high-confidence homozygous and high-confidence heterozygous 569 

genotype across the branches. 570 

 571 
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We notice that the default SNP calling parameters tend to overcall homozygous-572 

reference allele genotypes and that differences in sequencing depth can bias the 573 

relative number of heterozygous SNPs detected. To overcome these issues, we re-574 

called genotypes using conditional probabilities using down sampled allele counts. To 575 

do this, we first randomly selected a set number of sequencing reads for each library at 576 

each potential somatic SNP so that all libraries have the same sequencing depth at all 577 

SNPs. Using the down sampled reads, we calculate the relative conditional probability 578 

of each genotypes by dividing the conditional probabilities by the sum of the conditional 579 

probabilities of all three potential genotypes. These relative probabilities are then 580 

multiplied by the dosage assigned to their respective genotype (0 for RR, 1 for RA, 2 for 581 

AA), and the dosage genotype is the sum of these values across all 3 possible 582 

genotypes.  Discrete genotypes were assigned using the following dosage values: RR = 583 

dosage < 0.1; RA = 0.9 < dosage < 1.1; AA = dosage > 1.9. Dosages outside those 584 

ranges are assigned a NA discrete genotype. SNPs with an NA discrete genotype or 585 

depth below the down sampling level in any branch of a tree were removed from further 586 

analysis. We performed three replicates of this procedure for depths of 20, 25, 30, 35, 587 

40, and 45 reads. 588 

 589 

PacBio libraries for each branch were sequenced using the PacBio Sequel platform, 590 

fastq files aligned to the P. trichocarpa var. Stettler14 reference genome using ngmlr 591 

[64], and multi-sample mileup files generated using in Samtools v1.9 [61] to quantify the 592 

allele counts at the potential somatic SNPs. We used a minimum per-sample sequence 593 
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depth of 20 reads and used an alternate-allele threshold of 0.1 to call a heterozygote 594 

genotype in the PacBio data. 595 

 596 

To identify high-confidence candidate somatic SNPs, we identified potential somatic 597 

SNPs with the same genotypes across branches using both the Illumina-based PacBio-598 

based genotypes, only including SNPs with full data in all branches for both types of 599 

genotypes. Of these, we only retained SNPs that are homozygous in a single branch or 600 

have a single homozygous-to-heterozygous transition (and no reversion) going from the 601 

lowest to highest branches. 602 

 603 

Estimating somatic nucleotide mutation rate 604 

 605 

Building on the analytical framework developed in van der Graaf et al. (2015) and  606 

Shahryary et al. 2019 (co-submission), we developed mutSOMA 607 

(https://github.com/jlab-code/mutSOMA), a statistical method for estimating genetic 608 

mutation rates in long-lived perennials such as trees. The method treats the tree 609 

branching structure as a pedigree of somatic lineages and uses the fact that these cell 610 

lineages carry information about the mutational history of each branch. A detailed 611 

mathematical description of the method is provided in Supplementary Text. But briefly, 612 

starting from the .vcf* files from S samples representing different branches of the tree, 613 

we let Gik be the observed genotype at the k-th single nucleotide (k = 1, …, N) in the i-th 614 

sample, where N is the effective genome size (i.e. the total number of bases with 615 

sufficient coverage). With four possible nucleotides (A, C, T, G) , Gik can have 16 616 



 28 

possible genotypes in a diploid genome, 4 homozygous (A|A, T|T, C|C, G|G) and 12 617 

heterozygous (A|G, A|T, …, G|C). Using this coding, we calculate the genetic 618 

divergence, D, between any two samples i and j as follows: 619 

 620 

𝐷𝑖𝑗 = ∑𝐼(𝐺𝑖𝑘 , 𝐺𝑗𝑘)𝑁
−1

𝑁

𝑘=1

, 621 

 622 

where 𝐼(𝐺𝑖𝑘 , 𝐺𝑗𝑘) is an indicator function, such that, 𝐼(𝐺𝑖𝑘 , 𝐺𝑗𝑘) = 1 if the two samples 623 

share no alleles at locus k, 0.5 if they share one, and 0 if they share both alleles. We 624 

suppose that 𝐷𝑖𝑗 is related to the developmental divergence time of samples i and j 625 

through a somatic mutation model 𝑀𝛩 . The divergence times can be calculated from the 626 

coring data (Table S13). We model the genetic divergence using 627 

 628 

𝐷𝑖𝑗 = 𝑐 + 𝐷𝑖𝑗
• (𝑀𝛩) + 𝜖𝑖𝑗 , 629 

 630 

where 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2) is the normally distributed residual, c is the intercept, and 𝐷𝑖𝑗
• (𝑀𝛩) 631 

is the expected divergence as a function of mutation model M with parameter vector ϴ. 632 

Parameter vector ϴ contains the unknown mutation rate δ and the unknown proportion 633 

γ heterozygote loci of the most recent common ‘founder’ cells of samples i and j. The 634 

theoretical derivation of 𝐷𝑖𝑗
• (𝑀𝛩) and details regarding model estimation can be found in 635 

Supplementary Text. The estimation of the residual variance in the model allows for the 636 

fact that part of the observed genetic divergence between any two samples is driven 637 
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both by genotyping errors as well as by somatic genetic drift as meristematic cells pass 638 

through bottlenecks in the generation of the lateral branches. 639 

 640 

Structural variant analysis methods 641 

 642 

For structural variant (SV) analysis, PacBio libraries were generated for four branches 643 

from the tree 13 and four branches from tree 14 with four sequencing cells sequenced 644 

per branch using the PacBio Sequel platform. PacBio fastq files were aligned to the P. 645 

trichocarpa var. Stettler reference genome using ngmlr v.0.2.6 [64] using a value of 0.01 646 

for the "-R" flag. SVs were discovered and called using pbsv (pbsv v2.2.0, 647 

https://github.com/PacificBiosciences/pbsv). SV signatures were identified for each 648 

sample using 'pbsv discover' using the '--tandem-repeats' flag and a tandem repeat 649 

BED file generated using trf v4.09 [65] for the P. trichocarpa var. Stettler genome. SVs 650 

were called jointly for all 8 branches using 'pbsv call'.  The output from joint SV calling 651 

changes slightly depending on the order of the samples used for the input in 'pbsv call', 652 

so four sets of SVs were generated using four different sample orders as input. We 653 

used a custom R script [66] to filter the SV output from pbsv. We remove low-complexity 654 

insertions or deletions with sequence containing > 80% of a mononucleotide 8-mer, 655 

50% of a single type of binucleotide 8-mer, or 60% of two types of binucleotide 8-656 

mers.  We required a minimum distance of 1 kb between SVs. We removed SVs with 657 

sequencing coverage of more than three standard deviations above the mean coverage 658 

across a sample. After calling genotypes, any SVs with missing genotype data were 659 

removed. 660 
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 661 

Genotypes were called based on the output from pbsv using a custom R script. We 662 

required a minimum coverage of 10 reads in all sample and for one sample to have at 663 

least 20 reads. We required a minimum penetrance (read ratio) of 0.25 and at least 2 664 

reads containing the minor allele for a heterozygous genotype. We allowed a maximum 665 

penetrance of 0.05 for homozygous genotypes. For each genotype, we assigned a 666 

quality score based on the binomial distribution-related relative probability of the 3 667 

genotype classes (RR, AR, AA) based on A:R read ratio, using an estimated 668 

sequencing error of 0.032, and an estimated minimum allele penetrance of 0.35. For a 669 

genotype with a score below 0.9 but with the same genotype at the SV as another 670 

sample with a score above 0.98, the score was adjusted by multiplying by 1.67. Any 671 

genotypes with adjusted scores below 0.9 were converted to NA. For deletions, 672 

duplications, and insertions, 10 representatives in different size classes were randomly 673 

selected and the mapping patterns of reads were visually inspected using IGV v2.5.3 674 

[67] to assign scores indicating how well the visual mapping patterns support the SV 675 

designation. Scores were defined by the following: “strong”, multiple reads align to the 676 

same locations in the reference genome that support the SV type and size; “moderate”, 677 

multiple reads align to the same reference location for one side of the SV but align to 678 

different or multiple locations in the region for the other side of the SV; and “weak”, 679 

reads align to reference locations that indicate a different SV type or much different SV 680 

size. 681 

 682 
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The percent of genic sequence and tandem repeat sequence in deletions and 683 

duplications were calculated using the P. trichocarpa var. Stettler annotation and 684 

tandem repeat BED from above, respectively. Genome-wide expectations were derived 685 

by separating the genome into 10-kb windows and calculating the percent genic and 686 

tandem repeat sequence in each window. The distribution of genic and tandem repeat 687 

sequences in deletions and duplications were compared to genome-wide expectations 688 

using the Kolmogorov-Smirnov two-sample test (one-sided, Nnull = 39,151, Ndel = 689 

10,433, Ndup = 630). 690 

 691 

SVs showing variation between branches and identified in all 4 replicates are potential 692 

instances of somatic SV mutations or loss-of-heterozygosity gene conversions, and the 693 

mapping positions of sequencing reads were visually inspected with IGV [67] to confirm 694 

the variation at these SVs.  695 

 696 

MethylC-seq sequencing and analysis 697 

 698 

A single MethylC-seq library was created for each branch from leaf tissue. Libraries 699 

were prepared according to the protocol described in Urich et al. [68]. Libraries were 700 

sequenced to 150-bp per read at the Georgia Genomics & Bioinformatics Core (GGBC) 701 

on a NextSeq500 platform (Illumina). Average sequencing depth was ~41.1x among 702 

samples (Table S7). 703 

 704 
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MethylC-seq reads were processed and aligned using Methylpy v1.3.2 [69]. Default 705 

parameters were used expect for the following: clonal reads were removed, lambda 706 

DNA was used as the unmethylated control, and binomial test was performed for all 707 

cytosines with at least three mapped reads.  708 

 709 

Identification of Differentially Methylated Regions 710 

 711 

Identification of differentially methylated regions (DMRs) was performed using Methylpy 712 

v1.3.2 [69]. All methylome samples were analyzed together to conduct an undirected 713 

identification of DMRs across all samples in the CNN (N=A, C, G, T) context. Default 714 

parameters were used. Only DMRs at least 40-bp long with at least three differentially 715 

methylated cytosines (DMS) and five or more cytosines with at least one read were 716 

retained. For each DMR, the weighted methylation level was computed as mC / (mC + 717 

uC) where mC and uC are the number of reads supporting a methylated cytosine and 718 

unmethylated cytosine, respectively [41]. 719 

 720 

To identify epigenetic variants in these samples, we used a one-sided z-test to test for a 721 

significant difference in methylation level of DMRs pairwise between branches. For each 722 

pair, only DMRs with at least 5% difference in methylation level were used, regardless 723 

of underlying context. Resulting P values were adjusted using Benjamini-Hochberg 724 

correction (N = 383,600) with FDR = 0.05 [70] and DMRs are defined by adjusted P 725 

value ≤ 0.05.  726 

 727 
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Identification of Methylated Regions 728 

 729 

For each sample, an unmethylated methylome was generated by setting the number of 730 

methylated reads to zero while maintaining the total number of reads. Methylpy DMR 731 

identification program [69] was applied to each sample using the original methylome 732 

and unmethylated methylome with the same parameters as used for DMR identification. 733 

Regions less than 40 bp-long, fewer than three DMS, and fewer than five cytosines with 734 

at least one read were removed. Remaining regions from all samples were merged 735 

using BEDtools v2.27.1 [71]. 736 

 737 

Assigning genomic features to DMRs 738 

 739 

A genomic feature map was created such that each base pair of the genome was 740 

assigned a single feature type (transposable element/repeat, promoter, untranslated 741 

region, coding sequence, and intron) based on the previously described annotation. 742 

Promoters were defined as 2 kb upstream of the transcription start site of protein-coding 743 

genes. At positions where multiple feature types could be applicable, such as a 744 

transposon in an intron or promoter overlapping with adjacent gene, priority was given 745 

to untranslated regions (highest), introns, coding sequences, promoter, and transposon 746 

(lowest). Positions without an assignment were considered intergenic. Genomic feature 747 

content of each DMR and methylated region was assigned proportionally based on the 748 

number of bases in each category. 749 

 750 
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Identification of pseudo-allele methylation 751 

 752 

We aimed to categorize the DMRs into three pseudo-allele states: homozygous 753 

methylated, heterozygous, and homozygous unmethylated. First, DMRs were filtered on 754 

the following criteria: i) at least 25% change in weighted CG methylation level between 755 

the highest and lowest methylation level of the samples; ii) at least one sample had a 756 

CG methylation level of at least 75%; and iii) at least two “covered” CG positions. A 757 

“covered” CG is defined as having at least one read for both symmetrical cytosines in all 758 

samples. After filtering, 4,488 regions were used for analysis. 759 

 760 

For each region in each sample, we next categorize the aligned reads overlapping the 761 

region. If at least 35% of its “covered” CG sites are methylated, the read is categorized 762 

as methylated. Otherwise it is an unmethylated read. Finally, we define the pseudo-763 

allele state by the portion of methylated reads; homozygous unmethylated: ≤ 25%, 764 

heterozygous: > 25% and < 75%, and homozygous methylated: ≥ 75%. 765 

 766 

The null distribution was created by randomly shuffling the filtered DMRs in the genome 767 

such that each simulated region is the same length as the original and it has at least two 768 

“covered” CGs. The above procedure was applied and number of epigenotype changes 769 

was determined. This was repeated for a total of 10 times. 770 

 771 

The following special classes of DMRs were identified: highly variable, single loss, 772 

single gain, and tree specific. A DMR is highly variable if there were pseudo-allele 773 
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changes between all adjacent branches. A DMR is single loss if all but one branch was 774 

homozygous methylated, and one was homozygous unmethylated. Similarly, a DMR is 775 

single gain if all but one branch was homozygous unmethylated and one branch was 776 

homozygous methylated. Finally, a DMR is “tree specific” if all tree 13 branches were 777 

homozygous unmethylated and all tree 14 branches were homozygous methylated or 778 

vice versa. 779 

 780 

Estimating somatic epimutation rate 781 

 782 

We previously developed a method for estimating ‘germline’ epimutation rates in A. 783 

thaliana based on multi-generational methylation data from Mutation Accumulation lines 784 

[32]. In a companion method paper to the present study (Shahryary et al. 2019, co-785 

submission), we have extended this approach to estimating somatic epimutation rates in 786 

long-lived perennials such as trees using leaf methylomes and coring data as input. 787 

This new inference method, which we call AlphaBeta, treats the tree branching structure 788 

as a pedigree of somatic lineages using the fact that these cell lineages carry 789 

information about the epimutational history of each branch. AlphaBeta is implemented 790 

as a bioconductor R package 791 

(http://bioconductor.org/packages/devel/bioc/html/AlphaBeta.html). Using this approach, 792 

we estimate somatic epimutation rates for individual CG, CHG, and CHH sites 793 

independently, but also for regions. For the region-level analysis, we first use the 794 

differentially methylated regions (DMRs) identified above. Sampling from the distribution 795 

of DMR sizes, we then split the remainder of the genome into regions, which we refer to 796 
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as “non-DMRs”. Per sample, we aggregate the total number of methylated Cs and 797 

unmethylated Cs in each region corresponding to a DMRs or a non-DMRs and used 798 

these counts as input for AlphaBeta. 799 

 800 

mRNA-seq sequencing and analysis 801 

 802 

Total RNA was extracted from leaf tissue in each branch using the Direct-zol RNA 803 

MiniPrep Plus kit (Zymo Research) with Invitrogen’s Plant RNA Reagent. Total RNA 804 

quality and quantity were assessed before library construction. Strand-specific RNA-seq 805 

libraries were constructed using the TruSeq Stranded mRNA LT kit (Illumina) following 806 

the manufacturer’s instructions. For each sample, three independent libraries (technical 807 

replicates) were constructed. Libraries were sequenced to paired-end 75-bp reads at 808 

the GGBC on a NextSeq500 platform (Illumina). Summary statistics are included in the 809 

Table S9. 810 

 811 

For analysis, first, paired-end reads were trimmed using Trimmomatic v0.36 [72]. 812 

Trimming included removing TruSeq3 adapters, bases with quality score less than 10, 813 

and any reads less than 50-bp long. Second, remaining reads were mapped to the 814 

Stettler genome with HiSAT2 [73] using default parameters except to report alignments 815 

for transcript assemblers (--dta). The HiSAT2 transcriptome index was created using 816 

extracted splice sites and exons from the gene annotation as recommended. Last, 817 

transcriptional abundances for genes in the reference annotation were computed for 818 

each sample using StringTie v1.3.4d [74]. Default parameters were used except to limit 819 
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estimates to reference transcripts. TPM (transcripts per million) values were outputted 820 

to represent transcriptional abundance.  821 

 822 

Identification of differentially expressed genes 823 

 824 

Differentially expressed genes (DEGs) were identified using DeSeq2 v1.22.2 [46]. The 825 

count matrix was extracted from StringTie output files and the analysis was performed 826 

using the protocol (ccb.jhu.edu/software/stringtie/index.shtml?t=manual#deseq). 827 

Abundances for all samples were joined into one DESeq dataset with α = 0.01. Gene 828 

abundance was compared between all samples pairwise. In each pair, a gene was 829 

considered differentially expressed if the adjusted P value ≤ 0.01 and the log2-fold 830 

change ≥ 1. Genes differentially expressed in any pair were included for subsequent 831 

analysis. 832 

 833 

Overlap of DMRs and DEGs 834 

 835 

We identified DMRs which overlapped the promoter region (2 kb upstream of 836 

transcription start site) and gene body of annotated genes. For each DMR-gene pair, we 837 

computed the Pearson's product moment correlation coefficient between the weighted 838 

methylation level of the DMR and average gene abundance among replicates in TPM. 839 

Next, looking only at genes which were previously identified as differently expressed, 840 

we performed a two-sided Pearson’s correlation test for each DMR-DEG pair to test for 841 

statistically significant correlations. Resulting P values were multiple test corrected with 842 
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Benjamini-Hochberg correction (N = 382, FDR = 0.05) [70]. Adjusted P values ≤ 0.05 843 

were considered significantly correlated. 844 
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 906 

 907 

Fig. 1. Photograph and schematic drawing of Tree 13 and Tree 14. This wild P. 908 

trichocarpa, located near Mt. Hood, Oregon, experienced a decapitation event ~300 909 

years ago. Tree 14 re-sprouted from the stump and ~80-100 years later Tree 13 re-910 

sprouted. (a) Leaf samples were collected from the labeled terminal branches. (b) Age 911 

was estimated for both the end of the branch (black font) and where it meets the main 912 

stem (gray italics). Ages with * indicate age was estimated using diameter; all other 913 

estimates were from core samples. Leaf samples of each branch was used to create 914 

genomic sequencing libraries, PacBio libraries, whole-genome bisulfite sequencing 915 

libraries, and mRNA-sequencing libraries. 916 

 917 



 42 

 918 

 919 

Fig. 2. Most somatic mutations are transitions and occur in non-genic regions. (a) 920 

Distribution of reference to alternative allele observed in the high-confidence SNPs 921 

identified in Tree 13 and Tree 14. (b) Distribution of high-confidence SNPs separated by 922 

the genomic feature. Abbreviations: Pro, promoter; 2 kb upstream of TSS; TE, 923 

transposable elements and repeats; and IGR, intergenic regions. 924 

 925 
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 926 

 927 

Fig. 3. Somatic epimutation rates for single sites, regions, and by genomic 928 

feature. mCG (a) and mCHG (b) divergence by branch time divergence for single sites 929 

and regions; mCG (c) and mCHG (d) divergence by branch time divergence for 930 
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genomic features Pro (promoter; 2 kb upstream of TSS), mRNA, TE (transposable 931 

elements), and IGR (intergenic regions); Estimated mCG (e) and mCHG (f) gain rates 932 

by feature; Estimated mCG (g) and mCHG (h) loss rates by feature; Ratio of mCG (i) 933 

and mCHG (j) loss to gain by feature. Error bars represent bootstrapped 95% 934 

confidence intervals of the estimates. Abbreviations: Pro, promoter; 1.5 kb upstream of 935 

TSS; TE, transposable elements and repeats; and IGR, intergenic regions. 936 

 937 

 938 

 939 

Fig. 4. Identification and quantification of somatic stability of differentially 940 

methylated regions. (a) Divergence of differentially methylated regions corresponds to 941 

divergence in age. The darker color indicates combined length of the pairwise DMRs; 942 

(b) The genome-wide distribution of identified DMRs in genomic features. Abbreviations: 943 

TE, transposable elements and repeats; IGR, intergenic region; Pro, promoter region (2 944 
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kb upstream of transcription start site); UTR, untranslated regions; CDS, coding 945 

sequence. Methylated regions were identified in as regions methylated in at least one 946 

sample. (c) There are significantly more pseudo-allele changes between the branches 947 

at DMRs (blue) compared to the genome-wide null (Wilcox rank sum, one-sided, P 948 

value < 2 x 10-16). Gray bars are the genome-wide null as mean +/- std. dev. across 10 949 

simulations. (d) Browser screenshot of a tree specific DMR where all branches in tree 950 

13 are homozygous unmethylated and all branches of tree 14 are homozygous 951 

methylated. (e) Browser screenshot of a highly variable DMR where the pseudo allele 952 

state changes between each branch. (f) Browser screenshot of a single gain DMR 953 

where all branches except 13.5 are homozygous unmethylated and 13.5 gains 954 

methylation. (g) Browser screenshot of a single loss DMR where all branches except 955 

14.5 are homozygous methylated and 14.5 has lost methylation. For d-g, gene models 956 

and transposable elements are shown at the top and methylome tracks are below. 957 

Vertical bars indicate methylation at the position, where height corresponds to level and 958 

color is context, red for CG, blue for CHG, and yellow for CHH. DMR is indicated by 959 

thick black horizontal line. 960 

 961 
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 962 

 963 

Fig. 5. Gene expression is largely independent from divergence age and nearby 964 

cytosine methylation except in a few examples. a) Gene expression divergence is 965 

not significantly associated with divergence age. b) Distribution of positive and negative 966 

correlations for differentially expressed genes and overlapping/nearby DMRs. Positive 967 
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correlation occurs when the higher methylation level is associated with higher gene 968 

expression among the samples. (c) A significantly negatively correlated, tree-specific 969 

DMR and DEG where the DMR occurs in the promoter region of the gene (Pearson's 970 

correlation test, two-sided, N = 8, adjusted P value = 0.0067). The higher methylation 971 

levels in the DMR for tree 13 branches are associated with lower gene expression. (d) A 972 

significantly positively correlated, single gain DMR and DEG where the DMR occurs in 973 

the 5' untranslated region of the gene (Pearson's correlation test, two-sided, N = 8, 974 

adjusted P = 0.0141). The higher methylation level in the DMR for branch 13.1 is 975 

associated with greater gene expression. For c and d, gene expression, as transcripts 976 

per million (TPM), is represented as points for the individual replicates and as bar for 977 

mean among replicates. In the genome browser view, gene models and transposable 978 

elements are shown at the top and methylome tracks are below. Vertical bars indicate 979 

methylation at the position, where height corresponds to level and color is context, red 980 

for CG, blue for CHG, and yellow for CHH. DMR is indicated by thick black horizontal 981 

line. 982 
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