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ABSTRACT

The Rice Annotation Project Database (RAP-DB)
was created to provide the genome sequence
assembly of the International Rice Genome Sequen-
cing Project (IRGSP), manually curated annotation
of the sequence, and other genomics information
that could be useful for comprehensive understand-
ing of the rice biology. Since the last publication of
the RAP-DB, the IRGSP genome has been revised
and reassembled. In addition, a large number of
rice-expressed sequence tags have been released,
and functional genomics resources have been
produced worldwide. Thus, we have thoroughly
updated our genome annotation by manual curation
of all the functional descriptions of rice genes.
The latest version of the RAP-DB contains a variety
of annotation data as follows: clone positions,
structures and functions of 31439 genes validated
by cDNAs, RNA genes detected by massively
parallel signature sequencing (MPSS) technology
and sequence similarity, flanking sequences of
mutant lines, transposable elements, etc. Other
annotation data such as Gnomon can be displayed
along with those of RAP for comparison. We have
also developed a new keyword search system to
allow the user to access useful information. The
RAP-DB is available at: http://rapdb.dna.affrc.go.jp/
and http://rapdb.lab.nig.ac.jp/.

INTRODUCTION

Genome-wide studies of the major cereals, including rice,
have been promoted worldwide in order to respond to the
expected demand of increasing food supplies. In particu-
lar, genome sequence annotation plays a pivotal role to
explore agronomically useful traits by large-scale experi-
mental analyses, and several databases about cereal
genome information have been developed (1-3). After
the completion of the genome sequencing of the japonica
rice cultivar Nipponbare (4), the Rice Annotation
Project (RAP) was organized to create annotation data
with high accuracy and reliability (5). To provide the rice
genome annotation, we have created the RAP-DB (6),
which is a portal site for various types of data, such as

the genome assembly of the IRGSP, curated annotation
of the genome and full-length cDNAs (FLcDNAs) (7) and
related information beneficial to researchers of rice and
other cereals.

As biological data of rice continue to increase, the
RAP-DB must continue to supply the most up-to-date
information. For instance, the IRGSP has released the
build 4 assembly, 581446 5- or 3’-end sequences of
FLcDNA clones have been determined, and 77763
flanking sequence tags have been generated by 10
independent functional genomics groups (8-19). Thus,
the RAP annotation was extensively revised in gene
structures, functional descriptions, etc. Moreover, to
facilitate user access, improvements were made in some
RAP-DB functions, such as a novel database search
system. Here we describe the latest version of the RAP-DB
that consists of the updated genome annotation and
user-friendly functionalities to access the data.

NEW DATA CONTENTS
The IRGSP genome build 4 and updated RAP data

The IRGSP genome was updated and reassembled.
The rice genome sequence was determined by the map-
based clone-by-clone sequencing strategy using bacterial
and P1 artificial chromosome (BAC and PAC, respec-
tively) clones (4). All of the clone sequences (January 2005
data freeze) were assembled and overlaps between
neighboring clones were manually removed and the
lengths of all gaps were estimated by the fiber-FISH
method (4). We manually checked the positions and
orders of the clones, using genetic and EST markers
(20,21). This new version, build 4, contains 29 newly
sequenced clones and 96 updated clones. The previous
version, build 3 (June 2004 data freeze), contained 49
redundant clones that had been erroneously incorporated.
These clones were discarded in build 4. As a result,
the build 4 assembly makes up 95.4% of the Oryza
sativa L. ssp. japonica cultivar Nipponbare genome.
The genomic locations of BAC/PAC sequences can be
displayed in the ‘Region’ and ‘Details’ panels of GBrowse
(22) by checking the ‘BAC/PAC’ item (Figure 1).
Users can search for the BAC/PAC clones by their
accession numbers or clone names.

Our genome annotation is primarily based on evidence
of expressed transcripts (5). In addition to FLcDNA
sequences of rice (7), we used 581446 5- or 3'-end
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Figure 1. Schematic view of the annotation browser and items that can be selected.

sequences derived from rice FLcDNA clones that were
registered in the International Nucleotide Sequence
Databases (accession numbers CI000001-CI778739). All
of the cDNA sequences were aligned to the genome by
the method previously described (5). Please note that we
defined a locus as a region covered by overlapping cDNAs
and that different loci overlap only when the loci are
nested or contained in an intronic region. Protein-coding
genes were predicted by Fgenesh, GENSCAN and
GLocate, and a single gene structure was determined
for a locus by a modified version of Combiner (5). To
validate these ab initio predictions, we also employed
380812 rice expressed sequence tags (ESTs) and more
than 2 million mRNAs and ESTs of non-rice plants
(Hordeum vulgare, Sorghum bicolor, Saccharum offici-
narum, Triticum aestivum, Zea mays). We determined
31439 loci that were supported by evidence of expression,
and 30192 of which showed the potential of coding for
protein (Table 1) (6). Functional descriptions of these
loci were produced by automated methods. If the
descriptions were updated since the previous annotation,
they were manually curated by the method previously
described using our custom-made curation system (5).
The curated functions of the open reading frames (ORFs),
which were defined as the interval between the start
and stop codons, were classified into five categories
according to their level of sequence similarity (Table 2).
The probable protein products of 8226 loci had functions
identified or inferred by BLASTX searches against
UniProt Knowledgebase (Categories I and II). In

addition, 13632 loci possessed functional domain(s)
detected by InterProScan (Category III). We also exam-
ined 1247 transcripts in which no coding potential was
suggested, and found 176 putative non-protein-coding
RNAs by the method previously described (5). In the
RAP-DB, the loci and transcripts are linked to a page of
detailed description including the level of evidence,
InterPro domains, Gene Ontology annotations and other
information so that researchers can easily access these
useful resources.

Comparison with Gnomon’s annotation

Although cDNA-based annotation such as RAP generally
has high accuracy, different annotation methods
produce different results. In fact, a comparison of
human genes annotated by several projects showed
marked variation in their genomic structures (23).
To validate our annotation, we compared the gene
positions of RAP with those of Gnomon (Figure 1),
which is an integrative annotation pipeline developed by
National Center for Biotechnology Information (http://
www.ncbi.nlm.nih.gov/genome/guide/gnomon.html).

Gnomon combines ab initio predictions with sequence
homology. We found that 32664 FLcDNAs including
redundant sequences were mapped to the build 4 assembly
by the RAP method and 33937 by the Gnomon pipeline.
Our comparison of the exon positions revealed that
24836 (76.0%) of the genes determined by RAP had
the identical exon—intron structures to those by Gnomon.
Furthermore, 31433 (96.2%) of the RAP and Gnomon
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Table 1. Statistics of rice genes

Number of expressed loci 31439
Protein-coding loci with FLcDNAs 25012
Non-protein-coding loci with FLcDNAs 1247
Ab initio predictions with evidence of expression 5180

Ab initio predictions without evidence of expression 22022

Table 2. Classification of ORFs

Category”  Definition Number of ORFs
I Identical to known rice protein 664
I Similar to known protein 7562
11 InterPro domain-containing protein 13632
v Conserved hypothetical protein 6954
A% Hypothetical protein 1380

ORFs were classified as previously described (5).

genes overlapped with each other in their genomic
positions. The inconsistency of the cDNA-mappings
between RAP and Gnomon was due largely to the
differences of 5 or 3’ end alignments. This can be
accounted for by poor sequence quality, such as contam-
ination with a vector sequence. Both methods, therefore,
present highly similar results. Since these annotation
pipelines are independent and displayed similar gene
structures, cDNA-based genes provided by both methods
should be reliable. However, for the computationally
predicted genes without FLcDNA evidence, only 13123
(48.2%) of 27202 RAP genes unsupported by cDNAs
were covered by Gnomon’s genes. Since the current gene-
finding methods inevitably generate a large number of
erroneous predictions, these hypothetical genes should
be validated by cDNAs in future.

MPSS and small interfering RNA (siRNA)-producing
genomic regions

Although FLcDNAs are regarded as the best evidence of
expressed genes, it is laborious to determine a large
number of full-length transcripts. The MPSS method is
a sophisticated technique for the global identification
of RNA molecules (24). Since small RNA MPSS
signatures of rice are currently available (25), they were
mapped to the IRGSP build 4 genome (Figure 1). A total
of 2953855 small RNA signatures that were derived
from untreated flower, seedling and stem tissues were
sequenced and 284301 distinct signatures were identified
from these three libraries (25). Among these distinct
signatures, 204 136 matched to the IRGSP genome
with numbers of hits per signature ranging from 1 to
9122. When we compared the loci determined by
RAP with the MPSS signatures that mapped uniquely to
a single location of the genome, we found that 68.7% of
the RAP loci were supported by the MPSS signatures.
This proportion is higher than that estimated by a
comparison between a genome-wide tiling array and

rice genes determined by another project (64.8% of
non-transposons) (26).

To annotate siRNA-producing genomic regions,
we grouped small RNA signatures into clusters if
adjacent signatures were located within 500bp of each
other. With this strategy, 159410 clusters were identified
on the genome; the largest cluster has 15193 signatures
in a 75375bp region. Since the heterochromatic
siRNAs are known to form relatively dense clusters, we
used a cutoff value of 10 signatures per cluster to identify
siRNA-producing regions. Dense clusters were observed
not only in the centromeric regions but also in the
pericentromeric regions. Approximately one-third (56 371)
of the clusters have more than 10 signatures per cluster,
indicative of the high complexity of heterochromatic
siRNAs in rice.

Identification of microRNA (miRNA) genes

miRNAs are single-stranded RNAs that are composed of
~21nt. They are known to play important roles in
eukaryotic gene regulation (27). We annotated rice
miRNA genes by using a data set compiled in the
miRBase database, release 9.1 (28). To detect miRNA
gene candidates, we employed criteria that have been
adopted for other species (29). The miRNAs of miRBase
were mapped to the IRGSP genome (Figure 1), if both
5’- and 3'-flanking regions could form a stem-loop
structure, which is an important feature to distinguish
between true and false predictions. We successfully
identified 239 miRNA genes that belonged to 61 families
defined in miRBase. The miRNAs detected can be
displayed in the microRNA track of GBrowse. We
found that 20 of these miRNA gene families were
conserved in Arabidopsis and poplar, whereas 41 families,
many of which were single-copy genes, were specific to
rice. It is noteworthy that in some cases FLcDNAs with
no coding potential had been cloned over predicted
miRNA regions. These might be precursors of miRNAs
that could be processed to the functional form of ~21 nt.
Some miRNA candidates were mapped to regions
in which transposable elements (TEs) were enriched.
The functions of these candidates should be examined
by experimentation.

Other new data and functions

The genome sequencing of rice was expected to facilitate
large-scale analyses of gene functions. Mutant resources,
for functional genomics studies, have been produced by
several groups. To provide easy access to such resources,
we integrated the mutant information created by 10
independent groups (8—19). All the flanking sequences that
were tagged by Tosl7, T-DNA and Ds were compared
with the rice genome so that the positions of genes
disrupted by different methods were simultaneously
displayed in the RAP-DB (Figure 1). These flanking
sequences have been linked to the web pages of the mutant
providers.

More than 30% of the rice genome consists of TEs (4).
A genome-wide analysis suggests that rice TEs have



played several roles during the genome evolution (30). To
annotate TEs, we first transferred the Mutator-like
elements (MULE) positions of the build 2 assembly,
determined by IRGSP, to build 4 (4). In addition, CACTA
and Helitron elements were newly surveyed and detected
in build 4. LTR-retrotransposons were identified by the
method of RetrOryza (31).

To assist user access to the RAP-DB, the keyword
search functionality has been improved. Users can specify
a section of annotation and genomic positions to be
searched. In addition, since there are other annotation
activities of the rice genome, such as Osal and BGI-RIS
(3,32), a converter of gene identifiers is provided. The Os
code, which is the locus identifier of the IRGSP/RAP
annotation, can be converted to the LOC_Os identifier
of Osal (3), and vice versa. This conversion system can
deal with multiple identifiers separated by spaces or
commas.

FUTURE DIRECTIONS

We have developed the RAP-DB as an integrative
database of the IRGSP genome in which we aim to
collect information relevant to bioinformatics and to
functional genomics, breeding, etc. We plan to add data
for molecular markers, genetic maps, orthology to
Arabidopsis genes, EC numbers and some other results
of data analysis. Since a large number of the RAP loci
contain alternative splicing variants, an identification
number will be assigned to each variant. The annotation
of the RAP loci, such as electronically assigned
Gene Ontology annotations, will be provided to other
data resources. New, high-throughput DNA-sequencing
technologies are being developed and it is expected
that the number of rice species and cultivar genome
sequences will rapidly grow. These new sequences will
be incorporated into the RAP-DB by comparison to
the Nipponbare reference genome. A large amount of
sequence data from variant species and cultivars may
increase the difficulty of finding desired information. We,
therefore, plan to further improve the database search
system.
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