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Abstract

Creating gapless telomere-to-telomere assemblies of complex genomes is one of the
ultimate challenges in genomics. We use two independent assemblies and an optical
map-based merging pipeline to produce a maize genome (B73-Ab10) composed of
63 contigs and a contig N50 of 162 Mb. This genome includes gapless assemblies of
chromosome 3 (236 Mb) and chromosome 9 (162 Mb), and 53 Mb of the Ab10
meiotic drive haplotype. The data also reveal the internal structure of seven
centromeres and five heterochromatic knobs, showing that the major tandem repeat
arrays (CentC, knob180, and TR-1) are discontinuous and frequently interspersed with
retroelements.

Keywords: Gapless assembly, Maize genome, Knob structure, Meiotic drive, Long-
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Background
Maize is a classic genetic model, known for its excellent chromosome cytology and

rich history of transposon research [1]. Transposons make up the majority of the maize

genome [2], and their accumulation over millions of years has driven genes far apart

from each other and separated genes from their regulatory sequences [3]. There are

also large inversions and other structural variations that contribute to fitness [4, 5] and

significant variation in genome size caused by tandem repeat arrays [6]. Understanding

this remarkable structural diversity is important for the continued improvement of

maize, but the high repeat content has impeded progress [2, 5]. Here, we describe an

automated assembly merging approach that yields gapless maize chromosomes and

dramatically improves contiguity throughout the genome, including centromere and

knob regions.

The most challenging genomic regions to assemble are tandem repeat arrays that ex-

ceed the read length of the current sequencing technologies. In most eukaryotes, these

arrays are enriched in centromeres and ribosomal DNA (rDNA). Maize contains a

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Liu et al. Genome Biology          (2020) 21:121 
https://doi.org/10.1186/s13059-020-02029-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-020-02029-9&domain=pdf
http://orcid.org/0000-0003-3407-4553
mailto:kdawe@uga.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


centromeric repeat of 156 bp [7], a 45S rDNA repeat of 9349 bp, and a 5S rDNA repeat

of 341 bp. In addition, maize contains two abundant classes of knob repeats that are

found on chromosome arms, the major knob180 repeat (180 bp) [8] and the minor TR-

1 repeat (~ 360 bp) [9]. Knob repeats occur in arrays that extend into the tens of mega-

bases and present a significant barrier to full genome assembly. In most maize lines,

knobs appear as inert heterochromatic bulges [8], but in lines with a meiotic drive sys-

tem on Abnormal chromosome 10 (Ab10), they have centromere-like properties and

are preferentially segregated to progeny [10]. Ab10 is considerably longer than chromo-

some 10 and contains two inversions [11], three knobs, and long spans of uncharacter-

ized DNA that include a cluster of Kinesin driver (Kindr) genes required for meiotic

drive [9]. Meiotic drive systems have been documented in many organisms and often

lie within large inversions that contain novel repeat arrays [12], yet no meiotic drive

haplotype has been fully sequenced and assembled.

Results and discussion
A new maize inbred, B73-Ab10, was created by backcrossing a line containing Ab10 to

the B73 inbred six times and selfing it an additional five times (BC6F5). The B73-Ab10

inbred differs from B73 by the end of chromosome 10L which carries the Ab10 haplo-

type, the end of chromosome 9S which carries a kernel color gene necessary to score

meiotic drive, and a 13-Mb internal section of chromosome 6 (coordinates between ~

155 and 169Mb). We used DNA from this line to prepare an optical map with the Bio-

nano Saphyr system and sequenced it to high coverage using both PacBio and Nano-

pore technologies. We then implemented a genome assembly workflow based around

the optical map (Additional file 1: Fig. S1). Briefly, the PacBio data were assembled

using Canu [13], the Nanopore data assembled using miniasm [14], and the two inde-

pendent assemblies merged with miniasm and integrated with the optical map as hy-

brid scaffolds. Hybrid scaffolds were then used to guide further gap closing and create

a pseudomolecule assembly (Fig. 1a). Our approach of one-step contig merging and

error correction using optical maps as a reference differs from other methods that rely

on local assemblies to fill gaps and correct errors [15, 16]. While PacBio provided an

overall superior assembly, it tended to fail in large repetitive regions (Additional file 1:

Fig. S2A, B) and heterozygous areas (Additional file 1: Fig. S2C) where the Nanopore

assembly succeeded due to a longer read length distribution. This was particularly evi-

dent in TR-1, knob180, and subtelomeric arrays as well as other tandemly duplicated

regions (Additional file 1: Fig. S2B). Alignments of the optical map to the independent

assemblies [17] and standard genome completeness measures demonstrate that the ap-

proach is highly accurate (Additional file 1: Table S1 and 2).

The final assembly has a contig N50 of 162Mb (Table 1), which far exceeds the con-

tiguity of any prior maize genome assembly [2, 5]. Of particular note is the complete

236-Mb assembly of chromosome 3, which was assembled gaplessly without manual

intervention—a first for any chromosome from a large complex genome. While the hu-

man X-chromosome was also assembled gaplessly [18], this outcome required extensive

manual inspection and correction. The entire B73-Ab10 genome is represented by 63

contigs where 90% are longer than 20.4Mb (the N90). In addition to the expected gaps

in repeat arrays, there were two gaps associated with residual heterozygosity on

chromosome 9. Regions of heterozygosity reduce effective coverage and lead to
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assembly chimeras that are broken during hybrid scaffolding. We filled these

heterozygosity-associated breaks by choosing the dominant Bionano path and perform-

ing local assemblies over the gaps. Nanopore reads were also used to span a gap within

a CentC array to complete the chromosome 9 telomere-to-telomere assembly. Aside

from these manual interventions, some efforts to manually improve within-knob assem-

blies, and a correction to the Kindr gene complex region of Ab10, the assembly was au-

tomated. Our success in assembling chromosomes 3 and 9 can be attributed to the fact

Fig. 1 Assembly of the B73-Ab10 genome. a Whole-genome view. For each chromosome, the top to
bottom tracks are gene density, Cinful-Zeon retrotransposon density, Gypsy superfamily retrotransposon
density in 10 Kb sliding windows, repeat location (knob180 in blue, TR-1 in red, 45S rDNA in teal, CentC in
magenta), and the distribution of gapless contigs. CENH3 ChIP-seq peaks identifying centromeres are
marked by orange rectangles. The inset shows the centromere on chromosome 3, TR-1-rich knob on
chromosome 4, and knob180-rich knob on chromosome 7. The five most common retroelement families
are shown for each panel, along with centromeric retrotransposons (CRM) for the centromere. CENH3
enrichment in chromosome 3 is displayed in a heatmap. b The impact of assembly merging over a CentC-
rich region on chromosome 9. Seven contigs (orange, above) from the PacBio assembly were originally
misassembled, as can be seen in the alignment to the Bionano map (connecting lines show matching
sites). CentC tracts and gaps are annotated. Assembly merging corrected the output, leaving an 11-Kb gap
that was filled with nanopore reads. c Sequence alignment between normal chromosome 10 from B73
(N10) (140–152 Mb) and Ab10 (140–195 Mb) from B73-Ab10. Annotation is as in a, with Kindr genes marked
with black bars in the top track. Links show homologous regions larger than 500 bp
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that these chromosomes have the fewest cytologically visible repeat arrays [19]. All

remaining gaps in the assembly are marked at the edges by tandem repeats (Fig. 1,

Additional file 1: Fig. S2D).

Seven of the ten functional centromeres as defined by ChIP-seq of CENP-A/CENH3

[7] were assembled without gaps (Additional file 1: Table S3). Alignment of partial

BAC-based assemblies of B73 centromeres showed excellent agreement overall (Add-

itional file 1: Fig. S3). Only a subset of maize centromeres are composed of long CentC

arrays, and even within those arrays, the majority of reads (65%) can be uniquely

mapped, reflecting a high degree of sequence polymorphism (Additional file 1: Table

S3 and S4). Three centromeres have no CentC at all and are composed of transposons

of different forms. These include known centromeric retroelements (CRM) [7] as well

as other common retrotransposons. We found no tendency for CENH3 to interact with

CentC and CRM over any of the other repeats present (Additional file 1: Table S4).

The lack of sequence specificity can be seen on centromere 3, where CENH3 localized

over a 771-kb CentC array as well as a variety of other transposons in flanking se-

quence (Fig. 1a, inset).

Prior maize assemblies have succeeded in obtaining only small fragments of knob

repeat arrays. In contrast, a knob180-rich knob on chromosome 9 (850 Kb), a TR-

1-rich knob on chromosome 4 (1.3 Mb), and three TR-1-rich knobs (4.2 Mb, 2.6

Mb, and 2.1 Mb) on Ab10 were fully assembled in the B73-Ab10 assembly (Fig. 1a

and Additional file 1: Table S5). The data show that knobs, like centromeres [2, 7],

often contain more transposons than tandem repeats (Fig. 1c). Centromeric retro-

transposons target areas with CENP-A/CENH3 [2, 7] and occupy on average 31.9%

of functional centromeres, including within CentC arrays (Fig. 1a and Add-

itional file 1: Table S3 and S6). The new knob assemblies reveal that the Cinful-

Zeon family of Gypsy elements [20] preferentially target knobs. Cinful-Zeon ele-

ments occupy 27.0% of the assembled TR-1-rich knobs and 8.2% of the knob180-

rich knobs, but only 3.8% percent of CentC arrays (Fig. 1a and Additional file 1:

Table S6 and S7). Cinful-Zeon elements are also abundant in other heterochro-

matic regions throughout the genome (Fig. 1a).

In addition to revealing the internal structure of knobs, the data provide the first

complete view of the Ab10 haplotype that provides the selective force for the accumu-

lation and maintenance of knobs [10]. The meiotic drive haplotype on Ab10 contains

three fully assembled TR-1 knobs, a much larger knob180 knob that was not assem-

bled, and two large inversions (4.4 and 8.3Mb) that are homologous to normal

chromosome 10 (Fig. 1c). These major structural differences help to explain why re-

combination between the Ab10 haplotype and normal chromosome 10 is suppressed

Table 1 Assembly metrics of the B73-Ab10 genome

Contigs Pseudomolecules

N50 (Mb) N90 (Mb) Max Size (Mb) Contig Number Total Length (Mb) Gapa Length (Mb)

Nanopore 2.0 0.5 8.3 1673 2161.1 93.2

PacBio 41.2 7.1 156.3 216 2162.7 2.6

Merged 162.0 20.4 235.9 63 2162.8 1.3
aGaps longer than 10 Ns
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[21]. Ab10 also contains 22.4Mb of novel sequence with no synteny to other regions of

the maize genome or related grass genomes. Within this domain is the complete cluster

of nine Kindr genes that are integral components of the drive system [10], as well as

hundreds of other expressed genes, many of which have only one exon or overlap with

transposons and are likely non-functional (Additional file 1: Table S8). Additional mei-

otic drive functions associated with the movement of knobs at meiosis and their deliv-

ery to egg cells [22] remain to be identified in this newly discovered sequence.

Conclusions
Gapless genome assemblies remove all uncertainty about the order, spacing, and orien-

tation of genes and their regulators. We have shown that this can be achieved using

long reads and well-known assembly algorithms, with significant improvements in con-

tiguity obtained by integrating independent assemblies around an optical map scaffold.

Given that most contigs end in telomeres, centromeres, or knobs, we presume that vir-

tually all of the genes and associated regulatory information are represented in this gen-

ome assembly. The assembly merging pipeline also revealed the internal structure of

repetitive domains that were previously known only by cytological techniques, thereby

opening these regions to annotation and future epigenomic profiling. Similar results

should be achievable for other complex genomes, although higher sequence coverage,

longer reads, and/or additional scaffolding information may be needed for species with

polyploidy or higher levels of heterozygosity.

Methods
PacBio assembly

High molecular weight DNA was extracted from young leaves using the protocol of

Doyle and Doyle [23] with minor modifications. Young maize leaves flash frozen at −

80 °C were ground to a fine powder in liquid N2 followed by very gentle extraction in

CTAB buffer (that included proteinase K, PVP-40, and beta-mercaptoethanol) for 1 h

at 50 °C. After centrifugation, the supernatant was gently extracted twice with 24:1

chloroform:isoamyl alcohol. The upper phase was adjusted to 1/10th volume with 3M

KAc, gently mixed, and DNA precipitated with isopropanol. DNA was collected by cen-

trifugation, washed with 70% EtOH, air dried for 20 min, and dissolved thoroughly in

1× TE at room temperature.

Sequencing libraries were constructed following PacBio’s template prep protocols

(Procedure & Checklist–Preparing gDNA Libraries Using the SMRTbell Express Tem-

plate Preparation Kit 2.0, PN 101-693-800 Version 01) for the Express Template Prep

Kit 2.0 (Cat# 100-939-900) and sequenced using Sequel SMRTLink V5.1 and Sequel

binding and sequencing chemistry v2.1. The longest 50X out of 62X PacBio raw se-

quences were error-corrected using falcon_kit pipeline v0.7 [24] without repeat mask-

ing by TANmask and REPmask (-e 0.75 -l 3000 --min_cov 2 --max_n_read 200). The

error-corrected reads (43X, N50 = 22.3 Kb) were then trimmed and assembled with

Canu [13] (v1.8) with the following parameters: correctedErrorRate=0.065 corMhap-

Sensitivity=normal ovlMerThreshold=500 utgOvlMerThreshold=150. The read error

correction process that is necessary for PacBio assembly may have homogenized some

repeats and limited the assembly in long repeat regions. The accuracy of the Canu-
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generated contigs was increased by aligning the raw PacBio reads to the assembly using

pbmm2 (v1.2.0) from pb-assembly [24] and running the PacBio consensus algorithm

tool Arrow (v2.3.3) (https://github.com/PacificBiosciences/GenomicConsensus) with

default parameters to generate sequenced polished contigs. The contig assembly was

further polished using 73X PE150 Illumina sequence by first aligning the reads to the

Arrow polished assembly using minimap2 [25], followed by running the assembly tool

Pilon [26] (v1.22) to correct individual base errors and small indels using the following

parameters: --fix bases --minmq 30.

Nanopore assembly

Two different DNA extraction methods were used to generate high molecular weight

(HMW) DNA for Oxford Nanopore (ONT) sequencing. CTAB DNA was prepared as de-

scribed above for the PacBio assembly. Nuclear DNA was prepared using the protocol of

Luo and Wing [27] with minor modifications. Young leaves flash frozen at − 80 °C were

ground with liquid nitrogen and incubated with NIB buffer (10mM Tris-HCL, PH8.0, 10

mM EDTA PH8.0, 100mM KCL, 0.5M sucrose, 4 mM spermidine, 1 mM spermine) on

ice for 15min. After filtration through miracloth, Triton X-100 (Sigma) was added to

tubes at a 1:20 ratio, placed on ice for 15min, and centrifuged to collect nuclei. Nuclei

were washed with NIB buffer (containing Triton X-100) and re-suspended in 40ml of the

same buffer and centrifuged again. After removal of all liquid, 10ml of Qiagen G2 buffer

was added followed by gentle resuspension of nuclei; then, 30ml G2 buffer with RNase A

(to a final concentration of 50mg/ml) was added. Tubes were incubated at 37 °C for 30

min. Proteinase K (Invitrogen), 30mg, was added and incubated at 50 °C for 2 h followed

by centrifugation for 15min at 8000 rpm, at 4 °C, and the liquid gently poured into a new

tube. After gentle extraction with chloroform:isoamyl alcohol (24:1), DNA was precipi-

tated with two thirds volume isopropanol. The DNA pellet was washed with 70% EtOH,

air dried for 20min, and dissolved in TE at room temperature.

DNA from both the CTAB and nuclear prep was used to generate either a rapid

(SQK-RAD004) or one-dimensional (1D; SQK-LSK109) sequencing library for ONT.

The resulting libraries were run on either a MinION or a GridION sequencer running

for 48 h. All bases were called on the GridION using Guppy (v2.1.3), and the resulting

fastq files were used for genome assembly. A total of 121 Gb (~ 50×) of ONT sequence

was generated over 27 MinION R9.4 flowcells. The data were filtered for reads > 10 Kb

using seqtk (https://github.com/lh3/seqtk), resulting in an estimated 30× coverage

(N50 = 29,311 bp) of the maize genome. The resulting uncorrected reads were aligned

(overlap) with minimap2 (v2.13;-x ava-ont -t 64) [25], and an assembly graph (layout)

was generated with miniasm (v0.3; -f <reads> <overlaps>) [14]. The resulting graph was

inspected using Bandage [28]. The fact that the Nanopore assembly was carried out

with uncorrected reads may have contributed to its better performance in long repeat

regions (Additional file 1: Fig. S2). A consensus genome assembly was generated by

mapping reads > 10 Kb to the assembly with minimap2 and then running racon (v1.3.1)

[29]; the consensus process was repeated three times. The contig assembly was further

polished using 73X PE150 Illumina sequence by first aligning the reads to the consen-

sus assembly using minimap2 [14] followed by running the assembly tool Pilon (v1.18)

[26] two times using 73X PE150 Illumina sequence.
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Optical map assembly

Ultra-high molecular weight DNA was isolated from maize seedlings using a modified

version of the Bionano Genomics Plant Tissue DNA Isolation Base protocol. Approxi-

mately 0.5 g of healthy aerial tissue was collected from young B73-Ab10 etiolated seed-

lings grown in soil-free conditions for 2 weeks. The leaves were treated with a 2%

formaldehyde Bionano fixing solution, washed, chopped, and homogenized using a Qia-

gen TissueRuptor in homogenization buffer. Free nuclei were pelleted at 2000×g,

washed, isolated by gradient centrifugation, and embedded in a low melting point agar-

ose plug. The nuclei were lysed by treating with proteinase K and RNase A treatments

as described previously [30], and washed four times in Wash Buffer and five times in

TE buffer. The purified high molecular weight nuclear DNA was recovered by melting

the plug, digesting it with agarase, and subjecting the resulting sample to drop dialysis

against TE.

The Bionano Saphyr platform was used in combination with the Direct Label and

Stain (DLS) process to generate chromosome-level sequence scaffolds [31]. Direct la-

beling was performed using the Direct Labeling and Staining Kit (Bionano Genomics,

San Diego CA) according to the manufacturer’s protocol, except that 1 μg of DNA was

used and DNA Stain was added to a final concentration of 1 μl per 0.1 μg of final DNA.

The labeled sample was loaded into a Saphyr chip, and molecules separated, imaged,

and digitized using a Saphyr and Compute server. Data visualization, map assembly,

and hybrid scaffold construction were performed using Bionano Access (v1.3) and Bio-

nano Solve (v3.4.0). A subset of 1,580,077 molecules with a minimum size of 150 Kb

and combined length of 424,488Mb were assembled without pre-assembly using the

non-haplotype, no-CMPR-cut parameters without extend-split.

Assembly merging and gap closing

We developed a pipeline to integrate independent contig assemblies and curate assem-

bly errors using Bionano maps as an anchor. The pipeline consists of five steps: (1) con-

flict resolution, (2) assembly error curation, (3) contig merging, (4) hybrid assembly

and contig overlap removal, and (5) manual curation and gap filling (Additional file 1:

Fig. S1). The first four steps were automated. A gapless chromosome 3 was generated

upon contig merging in the third step, and the complete assembly of chromosome 9 re-

quired manual curation. While contig merging with miniasm can be applied to any two

sequence assemblies, the availability of de novo assembled Bionano maps is necessary

to perform conflict-cutting in step 1, contig error correction in step 2, and hybrid scaf-

folding in step 4 of the pipeline.

Step 1: Conflicts between the optical map and DNA sequence assemblies were

resolved using Bionano Solve software (https://bionanogenomics.com/support-page/

data-analysis-documentation/). Sequence assembly can occasionally connect two

regions that share a repetitive sequence but do not belong together (making a

chimeric contig). These appear as conflicts between Bionano maps and sequence

assemblies when they are aligned. Optical maps were aligned to in silico digested

representations of the DNA sequence assemblies using RefAligner (v3.4.0), and

conflicts identified with the AssignAlignType.pl script. Conflicts with a chimeric
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quality score higher than the default threshold were split using cut_conflicts.pl

(using default parameters from optArguments_nonhaplotype_noES_DLE1_saphyr.xml),

and a sequence file was produced with custom script cut_conflict_NGS.py.

Removing chimeric joins increases the chance of complementary contig merging

in step 3.

Step 2: Assembly errors in the conflict-resolved PacBio contigs were identified and

automatically curated with ONT contigs. In this step, PacBio and ONT contigs

were aligned to rescaled optical maps and structural discrepancies detected using

the structural variant calling pipeline from BionanoSolve (v3.4.0). Homozygous in-

sertions and deletions with a confidence of at least 0.1 and size larger than 1 Kb

were classified as true assembly errors in the PacBio contigs. On the condition

that no structural discrepancies were found in the corresponding ONT contigs,

the ONT contigs were used to replace the erroneous sequences in PacBio contigs

using custom script SV_fix.py.

Step 3: ONT contigs were used to close gaps and improve contiguity of the

PacBio contig assembly. ONT contigs were mapped to PacBio contigs with

minimap2 [25] (v2.13; -k28 -w28 -A1 -B9 -O16,41 -E2,1 -z200 -g100000 -r100000

--max-chain-skip 100), and overlap regions merged using miniasm [14] (v0.3; -1 -2

-r0 -e1 -n1 -h250000 -g100000 -o25000). This step creates PacBio/ONT hybrid

contigs that are called unitigs. The unitigs were then combined with the

remaining contigs from the PacBio backbone assembly to create a merged contig

assembly. After this step, a gapless chromosome 3 was generated (a region of

heterozygosity from 164.5 to 166.2 Mb on chromosome 3 was automatically

resolved). The merged contigs were then aligned to Bionano maps, where overlaps

between adjacent contigs were detected and merged with minimap2 (v2.13) and

miniasm (v0.3) using the custom script Overlap_merge.py. This step only identifies

large overlaps (roughly > 200 Kb) that can be detected at the level of de novo

Bionano label alignment. Identifying all overlaps, including smaller overlaps,

requires hybrid scaffolding with the optical map (step 4). If proceeding to step 4,

overlap merging in step 3 is optional.

Step 4: Bionano maps were integrated with the sequence contigs by hybrid

scaffolding using the hybridScaffold.pl script from BionanoSolve (v3.4.0) with

default parameters from optArguments_nonhaplotype_noES_DLE1_saphyr.xml.

This step orders and orients sequence contigs and facilitates the resolution of

remaining overlaps between contigs. As the optical maps are aligned and rescaled

with the sequence maps repeatedly during hybrid scaffolding, more accurate

overlaps between contigs are identified and annotated as 13N gaps. These overlaps

were removed through contig merging with miniasm (v0.3), as described in step 3.

Due to the extreme repetitiveness in the 45S rDNA repeat region on chromosome

6, both the contig assemblies and hybrid scaffolding in this area are erroneous.

Therefore, we left the contigs in the NOR un-merged and marked the incorrect-

ness with 13N gaps.

Step 5: Manual curation was performed to correct assembly errors, close gaps in

repetitive and heterozygous regions, and assemble telomeres.

Repeat assembly manual curation. In highly repetitive regions, erroneous read joins

at the tips of contigs were not detected as conflicts or assembly errors in steps 1 or 2
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due to the limited resolution of Bionano alignment. In these regions, we trimmed and

removed the unaligned regions to reveal eligible ends for overlap merging using

miniasm (v0.3). These modifications extended the contiguity of repeat arrays at the

edges of longer contigs. Contigs composed exclusively of knob and CentC repeats

arrays lack pan-genome anchor markers and are not present in the pseudomolecules.

Chromosome 9 manual curation. Seven gaps, ranging from 2 to 236 Kb, were

present in the chromosome 9 assembly after hybrid scaffolding. Two large gaps of

236 Kb and 41 Kb were caused by heterozygosity (76.29–76.80 Mb), one 21 Kb

gap was due to repetitiveness in a CentC array (58.43–58.67 Mb), and the

remaining four gaps were smaller than 7 Kb (two of these were in the 843-Kb

knob on the tip of 9S). The four small gaps were first filled by running three iter-

ations of LR Gapcloser (Sep 24, 2018 commit) [32] at default settings using PacBio

error-corrected reads. To resolve the 236-Kb gap caused by heterozygosity, all

contigs anchored to chromosome 9 were re-scaffolded using the longest chromo-

some 9 Bionano map as the sole anchor. This reduced the 236-Kb gap to 58 Kb.

Local assemblies were run with Flye (v2.6) [33] using ONT reads surrounding

gaps to fill the remaining 58-Kb and 41-Kb gaps. Flye-assembled contigs were in-

tegrated with the flanking contigs by unitigging with miniasm (v0.3) and aligned

to Bionano maps for inspection. An 8-Kb gap remained, which was filled with a

single ONT read that spans it. The gap in the CentC array was filled by manually

selecting two long ONT reads (> 50 Kb) that spanned the gap, creating a consen-

sus at the overlap and placing the resulting sequence in the gap.

Kindr complex manual curation. The assembly over the ~ 1-Mb tandem array of

Kindr genes (each within an ~ 100-Kb repeat) was erroneous due to collapsing in

the PacBio sequence contig and improper scaffolding. We manually selected the

most contiguous ONT contig over this region, carried out hybrid scaffolding for

the scaffold containing Kindr, placed an excluded contig in the correct area, and

removed an overlap region through contig merging.

Telomere manual curation. Fifteen telomeres were assembled by extending the ends

of scaffolds with the longest uniquely mapped ONT read that contained telomeric

repeats TTTAGGG/CCCTAAA (≥ 1 Kb). The regions with newly assembled

telomeres include 1L, 2L, 3S, 3L, 4S, 4L, 5L, 6L, 7S, 7L, 8S, 8L, 9S, 9L, and 10S.

The final scaffolds were polished with PacBio subreads using tools from pb-assembly

[24]. Read alignment was performed with pbmm2 (v1.2.0), and polishing was executed

with GCpp (v1.0.0) at default parameters. Scaffolds were further polished with 73X

PE150 Illumina reads using Pilon (v1.23) with default parameters [26]. The error-

corrected PacBio reads and Illumina reads often mapped incorrectly in highly repetitive

regions (Additional file 1: Fig. S2B,C,D). Regions with excessive incorrect mapping are

expected to be overpolished, whereas regions with few correctly mapped reads are ex-

pected to retain a higher frequency of sequencing errors.

AGP construction

The pseudomolecules were constructed from the hybrid scaffolds using ALLMAPS (v0.8.12)

[34]. Both pan-genome anchor markers [35] and the IBM (Intermated B73 ×Mo17)
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genetic map [36] were used with equal weights for ordering and orienting the

scaffolds. Pan-genome anchor markers were obtained from the CyVerse Data com-

mons [37] and processed to generate a bed file with 50 bp upstream and down-

stream of B73 V3 coordinates. The extracted markers were mapped to a HiSat2

(v2.1.0)29,30 indexed assembly of B73-Ab10 by disabling splicing (--no-spliced-

alignment) and forcing global alignment (--end-to-end). Very high read and refer-

ence gap open and extension penalties (--rdg 10000,10000 and --rfg 10000,10000)

were also used to ensure full-length mapping of marker sequence. The final align-

ment was then filtered for mapping quality greater than 30 and tag XM:0 (unique

mapping) to retain only high-quality, uniquely mapped marker sequences. The

mapped markers were merged with the predicted distance information to generate

a CSV input file for ALLMAPS. Only scaffolds with more than 20 uniquely

mapped markers, with a maximum of 100 markers per scaffold, were used for

pseudomolecule construction. The IBM genetic markers were downloaded from

MaizeGDB (https://www.maizegdb.org/complete_map?id=887740) [38] and were

processed to generate a bed file similar to pan-genome markers. For the markers

with coordinates, 50-bp flanking regions were extracted from the B73 v4 genome.

For markers without coordinates, marker sequences were used as-is, and those

missing both coordinates and sequences were discarded. Mapping of the markers

was done similar to the method described above for the pan-genome anchor

markers, with all uniquely mapped markers retained. The genetic distance infor-

mation for these markers was converted to a CSV file before use in ALLMAPS.

ALLMAPS was run with default options, and the pseudomolecules were finalized

after inspecting the marker placement plot and the scaffold directions. Of the 50

Bionano scaffolds anchored with sequence contigs, 26 with uniquely mapped gen-

etic markers were included in the pseudomolecules. Among the 24 unplaced scaf-

folds with a total size of 19.4 Mb, 22 are composed entirely of knob180 and/or

TR-1 arrays (17.7 Mb).

Comparing PacBio and Nanopore assemblies in repetitive and heterozygous regions

To determine how tandem repeats and regions of heterozygosity impacted the as-

semblies, we identified tandemly repeated areas by chromosome self-alignment

with minimap2 (v2.17; -PD -k19 -w19 -m200) and heterozygous regions by man-

ual inspection using Bionano Access software. PacBio gap coordinates were pro-

jected onto the final assembly using minimap2 (v2.17; -cx asm5 --cs), followed by

coordinate liftover using paftools.js [25]. Gaps that were complemented by Nano-

pore contigs were identified as gaps present in the PacBio assembly but absent in

the final assembly. The PacBio adjusted gap coordinates, complemented gaps, and

final assembly gaps were mapped to tandem repeats and heterozygous regions

with bedtools [39] (v2.28.0; window -r 500000 -l 500000). The co-occurence of

PacBio gaps with tandem repetitiveness and heterozygous regions was assessed by

two-tailed Fisher’s exact test using bedtools fisher (v2.28.0) at default settings.

To assess read coverage over gap areas, a total of 36.9X error-corrected PacBio reads

(≥ 10 Kb), 20.7X error-corrected Nanopore reads (≥ 10 Kb), and 30X PE150 Illumina

reads were mapped to the final assembly. Long-read mapping was performed using
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minimap2 (v2.17) with default parameters, and short-read mapping was carried out

with bwa (v0.7.17) at default settings. Read gap regions were defined as areas

mapped with fewer than 3 reads for PacBio and Illumina datasets, and fewer than

2 reads for the Oxford Nanopore dataset. Basepair-level genome coverage was cal-

culated with bedtools genomecov (v2.28.0; -bga), and regions with fewer reads than

the cutoff were extracted. The length distributions of PacBio and Oxford Nanopore

reads mapped to a tandem repeat (chr8: 31–33.5 Mb) and heterozygous area (chr3:

164–167.6 Mb) were obtained with SAMTools (v1.9).

RNA-seq

Ten tissues were sampled throughout development for evidence-based gene annota-

tion including the following: (1) primary root and (2) coleoptile at 6 days after

planting; (3) base of the 10th leaf, (4) middle of the 10th leaf, and (5) tip of the

10th leaf at the Vegetative 11 (V11) growth stage; (6) meiotic tassel and (7) imma-

ture ear at the V18 growth stage; (8) anthers at the Reproductive 1 (R1) growth

stage; and (9) endosperm and (10) embryo at 16 days after pollination. For each tis-

sue, two biological replicates were harvested, and each biological replicate was

made up of tissue from three individual plants. Endosperm and embryo tissues

were harvested from 50 kernels per plant (150 total per biological replicate). Tis-

sues 1–5 above were collected from greenhouse-grown plants, and tissues 6–10

were from field-grown plants. Greenhouse-grown plants were planted in Metro-

Mix300 (Sun Gro Horticulture) with no additional fertilizer and grown under

greenhouse conditions (27 °C/24 °C day/night and 16 h/8 h light/dark) at the Univer-

sity of Minnesota Plant Growth Facilities. Field-grown plants were planted at the

Minnesota Agricultural Experiment Station located in Saint Paul, MN, with 30-in.

row spacing at ~ 52,000 plants per hectare. RNA was extracted using the Qiagen

RNeasy plant mini kit following the manufacturer’s suggested protocol.

Total RNA samples were assayed by Bioanalyzer to determine RNA integrity and nor-

malized in 25 μl of nuclease-free water prior to library preparation. Sequencing libraries

were prepared using KAPA’s Stranded mRNA-seq kit (#KK4821) according to the man-

ufacturer’s instructions. The mRNA was enriched using oligo-dT beads, fragmented,

and converted to double-stranded cDNA using random hexamer priming and amplifi-

cation. Libraries were pooled at equimolar ratios and sequenced on NextSeq 500 in-

struments using the PE75 protocol.

Gene annotation

For evidence-based predictions, genome-guided transcript assemblies were generated from

five different assemblers, viz, Trinity (v2.6.6) [40, 41], StringTie (v1.3.4a) [42], Strawberry

(v1.1.1) [43], Cufflinks (v2.2.1) [42, 44], and Class2 [42, 44, 45], and the best set of transcripts

were identified and annotated as genes using Mikado (v1.2.4) [46]. Briefly, the RNA-seq reads

from each library were mapped to a STAR (v2.5.3a) [47] indexed B73-Ab10 genome using a

2-pass mapping approach (the initial round of alignments provides splice information for the

subsequent round of mapping reads). Default options were used for mapping with few post-

processing options enabled (print all SAM format attributes --outSAMattributes All; down-

stream compatibility --outSAMmapqUnique 10; and number of mis-matches
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--outFilterMismatchNmax 0). Individually mapped RNA-seq libraries were then pooled,

sorted, and indexed using SAMTools (v1.9) [48], for use with the transcript assembly pro-

grams. For all genome-guided transcriptome assemblers, default options were used except, if

it allowed minimum transcript length setting, it was set to 100 bp (Trinity using --min_con-

tig_length 100, StringTie using -m 100, and Strawberry using -t 100), and if it allowed RNAseq

strandedness, it was set to stranded (Trinity using -SS_lib_type FR, Cufflinks using --library-

type fr-firststrand). For Trinity, maximum intron size was also set to 10,000 (--genome_

guided_max_intron 10000). All assemblers generated a GFF3 as the final output except for

Trinity, for which assembled transcripts in fasta format were mapped back to the gmap

(v2019-05-12) indexed genome to generate a GFF3 file (by setting the output format option -f

to gff3_match_cdna). Portcullis (v1.1.2) [49] was used to generate a high confidence set of

splice junctions for the B73-Ab10 genome from the merged mapped reads. Mikado was con-

figured to use all transcript assemblies (with strandedness marked as True for all except for

Trinity, and with equal weights), portcullis-generated splice sites, and a plants.yaml scoring

matrix. Preliminary transcripts prepared by Mikado, through merging all transcripts and re-

moving the redundant copies, were processed using TransDecoder (v5.5.0) [50] (to identify

open reading frames) and blastx (v2.9.0) [40] against SwissProt viridiplantae proteins (for iden-

tifying full-length transcripts). Default options were used for TransDecoder, and for blastx,

maximum target sequences were set to 5 (-max_target_seqs 5) and output format to xml

(-outfmt 5). These were provided as input for Mikado for picking and annotating the best

transcripts for each locus. The obtained GFF3 file was used to extract transcripts and proteins

using the gffread utility from the Cufflinks package.

Additional structural improvements for the Mikado-generated transcripts were completed

using the PASA (v2.3.3) [51] genome annotation tool. The inputs for PASA included 2,019,

896 maize EST derived from genbank, 83,087 Mikado transcripts, 69,163 B73 full-length

cDNA from genbank, and 46,311 maize iso-seq transcripts from 11 developmental tissues that

were filtered for intron retention [52]. PASA was run with default options, with a first step of

aligning transcript evidence to the masked B73-Ab10 genome using GMAP (v.2018-07-04)

[53] and Blat (v.36) [54]. The full-length cDNA and Iso-seq transcript IDs were passed in a

text file (-f FL.acc.list) during the PASA alignment step. Valid near perfect alignments with

95% identity were clustered based on genome mapping location and assembled into gene

structures that included the maximal number of compatible transcript alignments. PASA as-

semblies were then compared with B73-Ab10 Mikado transcript models using default param-

eters. PASA updated the models, providing UTR extensions, novel and additional alternative

isoforms. PASA-generated models were passed through the MAKER-P (v3.0) [55] annotation

pipeline as model_gff along with all the transcript and protein sequences to obtain Annotation

Edit Distance (AED) [56] scores to assess the quality of annotations. Transposon element (TE)

related genes were filtered using the TEsorter tool [40, 57], which uses the REXdb (viridiplan-

tae_v3.0 + metazoa_v3) database of TEs. Finally, the gene annotations were verified for trans-

lation errors using the EnsemblCompara pipeline [58].

BUSCO assessment

The gene space completeness of the B73-Ab10 genome assembly was assessed using

the GenomeQC [59] tool, which provides a summary of the number of complete, frag-

mented, and missing Benchmarking Universal Single-Copy Orthologs (BUSCO) in the
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assembly. The Embryophyta database (embryophyta_odb9; consisting of 1440 con-

served, single-copy plant genes) and the genome assembly in the fasta file format were

provided as input to the tool to calculate the BUSCO metrics.

TE annotation

The manually curated transposable element library (maizeTE11222019) derived from the

Maize TE Consortium (MTEC; https://github.com/oushujun/MTEC) was used as the

base TE library. Novel TEs of the maize Ab10 genome not included in the MTEC library

were structurally identified using the EDTA pipeline (v1.6.5) [60] with parameters “-spe-

cies maize -curatedlib maizeTE11222019.” The MTEC library augmented with Ab10-

specific TEs was used to annotate TE fragments using RepeatMasker. Coding sequences

of the maize B73 v4 assembly were downloaded from MaizeGDB and used to remove

gene sequences in the EDTA-generated TE library. Whole-genome TE annotations were

generated using the EDTA-augmented MTEC library (-anno 1). The LTR Assembly Index

(LAI) [61] scores of genome assemblies were calculated using LAI (beta3.2) within the

LTR_retriever (v2.8) [62] package with parameters “-iden 94.8550 -totLTR 76.34.”

Centromere and repeat analyses

The overall accuracy of the centromere assemblies was assessed by aligning previous

BAC-based B73 centromere assemblies [37] to the B73-Ab10 genome using Bionano

RefAligner (v3.4.0) with default parameters. Although the BAC-based assemblies do

not traverse CentC arrays, there is excellent overall agreement in sequence and con-

tiguity (Additional file 1: Fig. S3).

Active centromere locations were determined by identifying the CENH3 ChIP-seq-

enriched regions in the final assembly using genomic reads as a control. The SE150 Illu-

mina ChIP-seq reads were obtained from SRA (SRX2737618) [63], and the 73X PE150

Illumina genomic reads were subsampled to 30X with seqtk (https://github.com/lh3/

seqtk). Both the ChIP-seq reads and the genomic reads were trimmed with Trim Glore

(v0.4.5; https://github.com/FelixKrueger/TrimGalore/) with default parameters and

aligned to the final assembly with BWA-MEM (v0.7.17) [64]. Epic2 [65] was employed to

call peaks with the CENH3 ChIP-seq alignment set as treatment, genomic read alignment

as control, MAPQ (mapping quality) as 20, effective genome size as 0.8, bin size as 5000,

and gap size as 0. The effective genome size of the final genome was calculated as the frac-

tion of unique 150-mers over total 150-mers using Jellyfish (v2.26) [66] (-m 150 -s 2193M

-out-counter-len 1 -counter-len 1). The coordinates of active centromeres were identified

as islands with a score above 250 and a fold change higher than 4.

The coordinates of repeat arrays were identified by blasting the knob180 and CentC

consensus sequences [63], a TR-1 consensus (TTCTTTATATTCCAACTTTTTA

GCAACTGTATGGTGGAAAAAGGTGTCTTACAACCTTAACCTATGTTTGGACA

GTTCTCTCGTGCAATTTGGCTAAATTTCCCATGGTCTTTATTTTATTTTGAG

AAACGATGTGGTATAATGATGTGCGATGTTTTACTTGAGTGGACATAAACAC

CATTTAGGTATGCCTTGAATAGAGGGGATTATTGGAAACCTGGTATCACAAA

AGGTCATTAGCTAGCCCAATAACGTCTTCATCCACTAGTTATACTCTAATAC

CCTCTAGTGTGAATACAATGCCCACAATATCATAGAAACGTCATTTGAGGT

TTAAAAGGTGATCTATTGTTTTGAA), subtelomeric repeat (NCBI CL569186.1), and
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ribosomal DNA intergenic spacer sequences (NCBI AF013103.1) against the B73-Ab10

genome. Knobs were defined as repeat clusters (≥ 500 Kb) that are composed of at least

10% repeat consensus sequences (knob180 and TR-1) with no more than 100 Kb spacing

between repeat units. This definition of knob180 knobs excludes the subtelomeric

knob180 arrays. CentC arrays are defined as repeat clusters (≥ 100 Kb) that are composed

of at least 10% CentC consensus sequences.

Non-overlapping repeat units were quantified in each repeat array with custom script

repeat_analyses.py. Five major families of the long terminal repeat (LTR)-retrotranspo-

sons in knobs, CentC arrays, and active centromeres were individually quantified with

bedtools (v2.28.0) [39]. The Opie-Ji family includes Opie, Ji, Ruda, and Giepum, and the

Prem1 family is composed of Prem1, Xilon, Diguus, and Tekay [67]. Centromeric retro-

transposons CRM1 and CRM2 were quantified together and annotated as CRM in ac-

tive centromeric regions.

To assess the enrichment of mappable repeat elements in functional centromeres,

each of the elements was first classified into uniquely mappable or non-uniquely map-

pable groups. A cutoff of MAPQ20 was applied to the alignment file, and bedtools

(v2.28.0) was used to estimate genome coverage at the base pair level (-bga). Non-

uniquely mapped locations (≤ 2 or ≥ 101 aligned reads) were merged into islands with a

maximum interval of 1 Kb. CENH3 ChIP-seq enrichment for the unique and non-

unique fractions of CentC, CRM, and five major LTR retrotransposon families was then

individually assessed. ChIP enrichment was calculated by normalizing ChIP-seq against

the input genome-seq alignment bam files using a RPKM normalization method with

deepTools (v3.2.1) [68]. Default options were used except for the following parameters:

--operation ratio --scaleFactorsMethod None --normalizeUsing RPKM.
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