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Abstract

Background: Plants can transmit somatic mutations and epimutations to offspring,
which in turn can affect fitness. Knowledge of the rate at which these variations arise
is necessary to understand how plant development contributes to local adaption in
an ecoevolutionary context, particularly in long-lived perennials.

Results: Here, we generate a new high-quality reference genome from the oldest
branch of a wild Populus trichocarpa tree with two dominant stems which have been
evolving independently for 330 years. By sampling multiple, age-estimated branches of
this tree, we use a multi-omics approach to quantify age-related somatic changes at
the genetic, epigenetic, and transcriptional level. We show that the per-year somatic
mutation and epimutation rates are lower than in annuals and that transcriptional
variation is mainly independent of age divergence and cytosine methylation.
Furthermore, a detailed analysis of the somatic epimutation spectrum indicates that
transgenerationally heritable epimutations originate mainly from DNA methylation
maintenance errors during mitotic rather than during meiotic cell divisions.

Conclusion: Taken together, our study provides unprecedented insights into the origin
of nucleotide and functional variation in a long-lived perennial plant.
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Background
The significance of somatic mutations, i.e., variations in DNA sequence that occur after

fertilization, in long-lived plant and animal species, has been a point of debate and in-

vestigation for the past 30 years [1–4]. It has been hypothesized that the evolutionary

consequences of such mutations are likely even more profound in woody perennial

plants, where undifferentiated meristematic cells produce all above-ground and below-

ground structures. As meristems undergo constant cell division throughout the lifetime

of a plant, somatic mutations arising in meristems may result in genetic differences be-

ing passed onto progeny cells [5–8]. The accumulation of somatic mutations can thus

lead to genetic and occasionally also phenotypic divergence among vegetative lineages

within the same individual. In trees, for instance, different branches have been shown

to differ in their responses to pest and pathogen attack, alternate reactions to drought

and/or nutrient availability, or dissimilar demands for photosynthate material, even

within the same individual [9]. Beyond the impact of point mutations and small inser-

tions/deletions on gene function, alterations in chromatin structure and DNA methyla-

tion might also impact gene expression variation.

Phenotypic variation has been attributed to somatic mutations in several perennial

plants, including the derivation of Nectarines in peach [10] and the origin of modern

grape cultivars (Vitis vinifera L.) [11]. In Populus tremuloides, somatic mutations have

been hypothesized as the cause for variation in DNA markers among individual ramets

of a single genotype [12]. Initial attempts to demonstrate within-tree mosaicism using

genetic markers [13] showed at low-resolution that the degree of intra-tree variability

was positively correlated with the physical distance between sampled branches. More

recently, work in oak (Quercus rubur) has documented variation in DNA sequence

among an independent sampling of alternate branches from a single genotype [14, 15].

They estimated a fixed mutation rate of 4.2–5.2 × 10− 8 substitutions per locus per gen-

eration, which is only within one order of magnitude of the rate observed in the herb-

aceous annual plant Arabidopsis thaliana [16, 17]. These results are consistent with an

emerging hypothesis that the per-unit-time mutation rate of perennials is much lower

than in annuals to delay mutational meltdown [18, 19], and this lower rate is accom-

plished by limiting the number of cell divisions between the meristem and the new

branch [20]. Additional recent studies have also revealed similar rates of spontaneous

mutations in a range of species including perennials [19]. Regardless of the rate of mu-

tation, the frequency of deleterious mutations in woody plants is high, which is hypoth-

esized to reduce survival of progeny resulting from inbreeding and favor outcrossing as

is observed in many forest trees [21, 22].

Similar to genetic mutations, phenotypic variation can be caused by epigenetic vari-

ation such as stable changes in cytosine methylation or epimutations [23]. Cytosine

methylation is a covalent base modification that is inherited through both mitotic and

meiotic cell divisions in plants [24]. It occurs in three sequence contexts, CG, CHG,

and CHH (H =A, T, or C), and the pattern and distribution of methylation at these dif-

ferent contexts is predictive of its function in genome regulation [25]. Spontaneous

changes in methylation independent of genetic changes can lead to phenotypic changes

[26]. Well-characterized examples in plants include the peloric phenotype in toadflax

(Linaria vulgaris), the colorless non-ripening phenotype in tomato (Solanum lycopersi-

cum), and the mantled phenotype in oil palm (Elaeis guineensis) [27–29].
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Once established, epimutations can stably persist or be inherited across genera-

tions. For example, the reversion rate from the colorless non-ripening epimutant

allele to wild type is about 1 in 1000 per generation in tomato [28]. Studies in A.

thaliana mutation accumulation lines have documented that the vast majority (91–

99.998%) of methylated regions in the genome are stably inherited across genera-

tions; only a small subset of the methylome shows variation among mutation accu-

mulation lines [30–33]. Estimates in A. thaliana indicate that the spontaneous

methylation gain and loss rates at CG sites are 2.56 × 10− 4 and 6.30 × 10− 4 per

generation per haploid methylome, respectively [34]. Despite the wealth of know-

ledge about transgenerational methylation inheritance, very little is known about

somatic epimutations, especially in long-lived perennial species. Previous studies

have been limited by resolution and time. Heer et al. observed no global methyla-

tion changes and no consistent variation in gene body methylation associated with

growth conditions of Norway spruce [35]. Several studies have linked stress condi-

tions to differential methylation in perennials but did not look at the stability of

methylation after removing the stressor [36, 37]. One exception, Le Gac et al.,

identified environment-related differentially methylated regions in poplar, but only

examined stability across 6 months [38].

Detailed insights into the rate and spectrum of somatic mutations and epimutations

are necessary to understand how somatic development of long-lived perennials contrib-

ute to population-level variation in an ecoevolutionary context. Here we generated a

new high-quality reference genome from the oldest branch of a wild Populus tricho-

carpa tree with two dominant stems which have been evolving independently for ap-

proximately 330 years. By sampling multiple, age-estimated branches of this tree, we

used a multi-omics approach to quantify age-related somatic changes at the genetic,

epigenetic, and transcriptional level. Our study provides the first quantitative insights

into how nucleotide and functional variation arise during the lifetime of a long-lived

perennial plant.

Results
Experimental design for the discovery of somatic genetic and epigenetic variants

A stand of trees was identified near Mount Hood, Oregon, and vegetative samples

were collected from over 15 trees as part of an independent study. Of these trees,

five were chosen for subsequent analysis and five branches of each tree were iden-

tified (Additional file 1: Fig. S1). For each branch, the stem age was determined by

coring the main stem at breast height and where the branch meets the stem and

the branch age was determined by coring the base of the branch (Fig. 1 and Add-

itional file 1: Fig. S2). Although 25 branches in total were initially sampled, six

were excluded from analysis because they were epicormic and age estimates could

not be determined. Two other branches had incomplete cores, but ages could be

estimated based on radial diameter.

From this, we were specifically interested in tree 13 and tree 14 (Fig. 1). Origin-

ally identified as two separate genotypes, they are actually two main stems of a sin-

gle basal root system and trunk. Both tree 13 and tree 14 originated as stump

sprouts off of an older tree that was knocked down over 300 years ago. Attempts
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to determine the total age were unsuccessful. However, statistical estimates based

on molecular-clock arguments and a regression analysis of diameter to age suggest

that the tree is approximately 330 years old (Shayary et al. 2019, co-submission).

Leaf samples were collected from eight age-estimated branches for multi-omics ana-

lysis for tree 13 and tree 14. The oldest branch of tree 14 (branch 14.5) was used for

genome assembly of Populus trichocarpa var. Stettler. Genome resequencing was per-

formed for all branches to explore intra- and inter-tree genetic variation. PacBio,

MethylC-seq, and mRNA-seq libraries were constructed for the branches of tree 13

and tree 14 to explore structural, methylation, and transcriptional variation,

respectively.

Genome assembly and annotation of Populus trichocarpa var. Stettler

We sequenced the P. trichocarpa var. Stettler using a whole-genome shotgun sequen-

cing strategy and standard sequencing protocols. Sequencing reads were collected using

Illumina and PacBio. The current release is based on PacBio reads (average read length

of 10,477 bp, average depth of 118.58×) assembled using the MECAT CANU v.1.4 as-

sembler [39] and subsequently polished using QUIVER [40]. A set of 64,840 unique,

non-repetitive, non-overlapping 1.0-kb sequences were identified in the version 4.0 P.

trichocarpa var. Nisqually assembly and were used to assemble the chromosomes. The

version 1 Stettler release contains 392.3Mb of sequence with a contig N50 of 7.5Mb

and 99.8% of the assembled sequence captured in the chromosomes. Additionally, ~

232.2Mb of alternative haplotypes were identified. Completeness of the final assembly

was assessed using 35,172 annotated genes from the version 4.0 P. trichocarpa var. Nis-

qually release (jgi.doe.gov). A total of 34,327 (97.72%) aligned to the primary Stettler

assembly.

Fig. 1 Photograph and schematic drawing of tree 13 and tree 14. This wild P. trichocarpa, located near Mt.
Hood, Oregon, experienced a decapitation event ~ 300 years ago. Tree 14 re-sprouted from the stump and ~
80–100 years later tree 13 re-sprouted. a Leaf samples were collected from the labeled terminal branches. b
Age was estimated for both the end of the branch (black font) and where it meets the main stem (gray italics).
Ages with * indicate age was estimated using diameter; all other estimates were from core samples. Leaf
samples of each branch was used to create genomic sequencing libraries, PacBio libraries, whole-genome
bisulfite sequencing libraries, and mRNA-sequencing libraries
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The annotation was performed using ~ 1.4 billion pairs of 2 × 150 stranded paired-

end Illumina RNA-seq GeneAtlas P. trichocarpa var. Nisqually reads, ~ 1.2 billion pairs

of 2 × 100 paired-end Illumina RNA-seq P. trichocarpa var. Nisqually reads from Dr.

Pankaj Jaiswal, and ~ 430 million pairs of 2 × 75 stranded paired-end Illumina var. Stet-

tler reads using PERTRAN (as described in [41]) on the P. trichocarpa var. Stettler gen-

ome. About ~ 3 million PacBio Iso-Seq circular consensus sequences were corrected

and collapsed by a genome-guided correction pipeline on the P. trichocarpa var. Stettler

genome to obtain ~ 0.5 million putative full-length transcripts. We annotated 34,700

protein-coding genes and 17,314 alternative splices for the final annotation. Because of

the extensive resources included in the annotation, 32,330 genes had full-length tran-

script support.

Identification and rate of somatic genetic variants

Leaf samples from the five trees were sequenced to an average depth of ~ 87× (~ 60–

164×) using Illumina HiSeq. Roughly 88% of the high-quality reads map to the genome

and about 98.6% of the genome is covered by at least one read, and genome coverage

(~ 8–500×) used for SNP calling was about 97%. The initial number of SNPs per tree

(mutation on any branch) varied between 44,000 and 152,000, which is populated with

many false positives due to coverage, sequencing, alignment errors, etc. Applying an

additional filter requiring > 20× coverage per position and requiring coverage in all

branches reduced the total amount genome space queried to ~ 40Mb. Furthermore,

since most of the genome (99.9%) is homozygous at every base pair, a somatic mutation

will almost always result in a change from a homozygous to heterozygous site. Restrict-

ing the analysis to sites that change from homozygous to heterozygous, we identified

91 high-confidence SNPs in tree 13 and 95 high-confidence SNPs in tree 14 (Add-

itional file 2: Tables S1–2).

Over two thirds of the SNPs in tree 13 and tree 14 were transition mutations, with

C-G to T-A mutations accounting for over 54% of the SNPs (Fig. 2a). Of the transver-

sion mutations, C-G to G-C was the least common (3.8%) whereas C-G to A-T was

most common (10%). Nearly half of the SNPs (46%) occurred in transposable elements

and about 10% occur in promoter regions (Fig. 2b and Additional file 2: Tables S1-S2).

SNPs are significantly enriched in TEs and depleted in mRNA regions genome-wide

(chi-square, df = 3, P < 0.001). For TEs, SNPs have a 0.66 fold-enrichment in tree 13

and 0.85 fold-enrichment in tree 14 (Additional file 2: Table S3a). Examining TE classes

further, SNPs are enriched in SINE elements are depleted in Gypsy and Helitron ele-

ments (Additional file 2: Table S3b).

To obtain an estimate of the rate of somatic point mutations from these SNP calls, we

developed mutSOMA (https://github.com/jlab-code/mutSOMA), a phylogeny-based in-

ference method that fully incorporates knowledge of the age-dated branching topology of

the tree (see “Methods” and Additional file 3: Supplementary Text). Using this approach,

we find that the somatic point mutation rate in poplar is 1.33 × 10− 10 (95% CI 1.53 ×

10− 11–4.18 × 10− 10) per base per haploid genome per year (Additional file 2: Table S4).

Generation time can refer to two measurements—time from seed to production of first

seeds and the organism’s lifespan. In annual plants, these values can be considered the

same; however, this is not the case for perennials. Assuming 15 years from seed to
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production of first seeds [42], the poplar seed-to-seed generation mutation rate would be

approximately 1.99 × 10− 9. This is slightly lower than the per-generation (seed-to-seed)

mutation rate observed in the annual A. thaliana (7 × 10− 9) [16]. Next looking at the life-

span per-generation rate and assuming a maximum age of 200 years [43], the lifespan per-

generation rate is 2.66 × 10− 8. This estimate is slightly lower than the per-generation som-

atic mutation rate recently reported in oak (4.2–5.8 × 10− 8) [14].

To analyze structural variants (SV) between haplotypes and somatic SV muta-

tions, PacBio libraries were generated for the eight branches from tree 13 and tree

14 (Fig. 1). For each branch, four PacBio cells were sequenced generating an aver-

age output of 3.05 million reads and 28.3 Gb per branch (Additional file 2: Table

S5). After aligning the PacBio output to the P. trichocarpa var. Stettler genome,

calling SVs larger than 20 bp, and filtering, we identified ~ 10,466 deletions, ~ 6702

insertions, 645 duplications, and three inversions between the reference Stettler

haplotype and the alternative haplotype (Additional file 2: Table S6). Upon manual

inspection of read mapping for a representative subset of SVs, 72.6% of SVs have

strong support where multiple aligned reads support the SV type and size (Add-

itional file 2: Table S7). Deletions and duplications are significantly enriched in

tandem repeat sequence and depleted in genic sequence (Kolmogorov-Smirnov

two-sample test, P value < 2.2 × 10− 16). Furthermore, deletions generally have less

genic sequence and more tandem repeat sequence than do duplications (Additional

file 1: Fig. S3). Several of the detected SVs are large, with 11 deletions and five du-

plications greater than 50 kb (Additional file 2: Table S6) with genic sequence con-

tent ranging from 0.0 to 23.7%. Comparisons of the branches from tree 13 and

tree 14 did not identify instances of somatic SV mutation.

Fig. 2 Most somatic mutations are transitions and occur in non-genic regions. a Distribution of reference to
alternative allele observed in the high-confidence SNPs identified in tree 13 and tree 14. b Distribution of
high-confidence SNPs separated by the genomic feature. See Additional file 2: Table S3 for per-tree
distributions. Abbreviations: Pro, promoter (2 kb upstream of TSS); TE, transposable elements and repeats;
and IGR, intergenic regions
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Identification and rate of somatic epigenetic variants

To explore somatic epigenetic variation associated with changes in DNA methylation,

we generated whole-genome bisulfite sequencing libraries from the branch tips of tree

13 and tree 14 (Fig. 1). The average genome coverage for the samples was ~ 41.1×, and

sequence summary statistics are located in Additional file 2: Table S8. Genome-wide

methylation levels were similar across all samples with 36.61% mCG, 19.02% mCHG,

and 2.07% mCHH% (Additional file 1: Fig. S4) [44], indicating that global methylation

levels are relatively stable across branches. Nonetheless, we observed significant age-

dependent DNA methylation divergence between branches in CG and CHG contexts,

both at the level of individual cytosines as well as at the level of regions, i.e., clusters of

cytosines (Fig. 3a-b, Additional file 1: Fig. S5, and Additional file 2: Table S9). These

age-dependent divergence patterns indicate that spontaneous methylation changes (i.e.,

epimutations) are cumulative across somatic development and thus point to a shared

meristematic origin (Shahryary et al. 2019, co-submission).

To obtain an estimate of somatic epimutation rates, we applied AlphaBeta (Shahryary

et al. 2019, co-submission). The method builds on our previous approach for estimating

“germline”-epimutation in mutation accumulation (MA) lines except here we treat the

tree branching topology as an intraorganismal phylogeny and model mitotic instead of

meiotic inheritance. Focusing first on cytosine-level epimutations, we estimated that at

the genome-wide scale spontaneous methylation gains in contexts CG and CHG occur

at a rate of 1.8 × 10− 6 and 3.3 × 10− 7 per site per haploid genome per year, respectively,

whereas spontaneous methylation losses in these two sequence contexts occur at a rate

of 5.8 × 10− 6 and 4.1 × 10− 6 per site per haploid genome per year. Similar rate estimates

were obtained in a replication experiment (Additional file 1: Fig. S6). Cytosines in CHH

context could not be shown to significantly accumulate epimutations (Additional file 2:

Table S9). Based on these estimates, we extrapolate that the seed-to-seed per-generation

epimutation rate in poplar is about 10− 5 and the lifespan per-generation rate is 10− 4.

Remarkably, these estimates are very similar to those reported in A. thaliana MA lines

where the average CG and CHG rates are about 3.6 × 10− 4 and 3.1 × 10− 5, respectively

(Shahryary et al. 2019, co-submission). The observation that two species with such dif-

ferent life history traits and genome architecture display very similar per-generation

mutation and epimutation rates suggests that the rates themselves are subject to strong

evolutionary constraints.

In addition to global epimutation rates, we also estimated rates for different genomic

features (mRNA, promoters, intergenic, TEs). This analysis revealed highly significant

rate differences in the CG and CHG context between genomic features, with mRNAs

showing the highest and TEs the lowest combined rates (Fig. 3c–j). Interestingly, the

ordering of the magnitude of the mRNA, promoter, and intergenic rates is similar to

that previously observed in A. thaliana MA lines [34]. The differences in rates at local

genomic features likely reflect the distinct DNA methylation pathways that function on

these sequences (RNA-directed DNA methylation, CHROMOMETHYLASE3, CHRO-

MOMETHYLASE2, DNA METHYLTRANSFERASE1, etc.). For example, the high rate

of epimutation losses in mRNA relative to other features (Fig. 3g, h) could reflect the

activity of CMT3-mediated gene body DNA methylation [45, 46]. The observation that

the epimutation rates of these features are consistent between A. thaliana MA lines (>

60 generations) and this long-lived perennial (within a single generation) seems to
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Fig. 3 Somatic epimutation rates for single sites, regions, and by genomic feature. mCG (a) and mCHG (b)
divergence by branch time divergence for single sites and regions; mCG (c) and mCHG (d) divergence by branch
time divergence for genomic features Pro (promoter; 2 kb upstream of TSS), mRNA, TE (transposable elements), and
IGR (intergenic regions). The dots show the individual observed divergences, whereas the line represents the fit of the
data to the model. Estimated mCG (e) and mCHG (f) gain rates by feature. Estimated mCG (g) and mCHG (h) loss
rates by feature. Ratio of mCG (i) and mCHG (j) loss to gain by feature. An F-test was used comparing the neutral
model vs null model (Supplementary Text). See Additional file 2: Table S9 for P values. Error bars represent
bootstrapped 95% confidence intervals of the estimates. Abbreviations: Pro, promoter; TE, transposable elements and
repeats; and IGR, intergenic regions
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imply that epimutations are not a result of biased reinforcement of DNA methylation

during sexual reproduction or environment/genetic variation, but instead a feature of

DNA methylation maintenance through mitotic cell divisions.

Assessment of spontaneous differentially methylated regions

Differentially methylated regions are functionally more relevant than individual

cytosine-level changes, as in certain cases they are linked to differential gene expression

and phenotypic variation [27–29, 47, 48]. To explore the extent of differentially methyl-

ated regions (DMRs) that spontaneously arise in these trees, we searched for all pair-

wise DMRs between all branches. In total, we identified 10,909 DMRs that possessed

changes in all sequence contexts (CG, CHG, and CHH-C-DMRs). Together, they con-

stitute approximately 1.69Mb of the total 167.4 Mb (~ 1%) of methylated sequences in

the Stettler genome and they reveal age-dependent accumulation (Fig. 4a). Most DMRs

occur in intergenic regions (56.7%), but a significant enrichment of DMRs was detected

within 2 kb from the transcriptional start site of genes compared to methylated regions

Fig. 4 Identification and quantification of somatic stability of differentially methylated regions. a Divergence
of differentially methylated regions corresponds to divergence in age. The darker color indicates combined
length of the pairwise DMRs. b The genome-wide distribution of identified DMRs in genomic features.
Abbreviations: TE, transposable elements and repeats; IGR, intergenic region; Pro, promoter region (2 kb
upstream of TSS); UTR, untranslated regions; CDS, coding sequence. Methylated regions were identified in
as regions methylated in at least one sample. c There are significantly more pseudo-allele changes between
the branches at DMRs (blue) compared to the genome-wide null (Wilcoxon rank sum, one-sided, P value <
2 × 10− 16). Gray bars are the genome-wide null as mean +/− std. dev. across 10 simulations. d Browser
screenshot of a tree specific DMR where all branches in tree 13 are homozygous unmethylated and all
branches of tree 14 are homozygous methylated. e Browser screenshot of a highly variable DMR where the
pseudo-allele state changes between each branch. f Browser screenshot of a single gain DMR where all
branches except 13.5 are homozygous unmethylated and 13.5 gains methylation. g Browser screenshot of a
single loss DMR where all branches except 14.5 are homozygous methylated and 14.5 has lost methylation.
For d–g, gene models and transposable elements are shown at the top and methylome tracks are below.
Vertical bars indicate methylation at the position, where height corresponds to level and color is context,
red for CG, blue for CHG, and yellow for CHH. DMR is indicated by thick black horizontal line
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as a whole (Fig. 4b) (Fisher’s exact test, one-sided, P value < 0.001). There is no signifi-

cant enrichment of gene function for DMRs within promoters.

Given the heterozygous nature of wild P. trichocarpa, we explored allelic methy-

lation changes. After filtering for sufficient coverage and methylation change, we

assigned the pseudo-allele state of each branch at 4488 DMRs. Possible states were

homozygous unmethylated, heterozygous, and homozygous methylated. In each

sample, 43.0% of DMRs, on average, were categorized as homozygous methylated

(Additional file 1: Fig. S7). Interestingly, the youngest branches, 13.1 and 14.1 have

about 10% more homozygous methylated pseudo-alleles than the other branches

(51.1% vs 41.7%). Next, we looked at the number of changes of pseudo-allele

states. This is expected as DMRs were identified as having different methylation

levels in the samples. On average, there are 3.02 state changes for each DMR with

94.4% of DMRs having one to five state changes (Fig. 4c). These data suggest that

many of these regions are metastable, a common feature of epimutations in plants

[27–31, 33].

An example of a region with one state change are the tree specific DMRs (Fig. 4d). In

these regions, all branches of one tree are homozygous unmethylated and all branches

of the other tree are homozygous methylated. This suggesting the methylation state

change occurred shortly after the trees separated and remained stable throughout sub-

sequent mitotic divisions. In contrast, we also identified highly variable regions with

seven state changes, a change between each branch (Fig. 4e). Of the regions with two

state changes, 150 have branch-specific state changes. For example, in Fig. 4f, branches

13.1 to 13.3 are homozygous unmethylated, then it changes to homozygous methylated

for branch 13.5, and changes again to homozygous unmethylated for branches 14.5–

14.2. Similarly, in Fig. 4g, all branches except 14.5 are homozygous methylated and 14.5

has spontaneously lost methylation.

Analogous to our epimutation rate estimation of individual sites, we used the identi-

fied C-DMRs (differential methylation in all cytosine sequence contexts) as a basis to

obtain estimates of the rate at which such region-level changes occur. To do this, we

separated the remaining genomic space into control regions (“non-DMR”) with the

same size distribution as observed for C-DMRs and used the methylation status of all

(non-) DMR as input for epimutation analysis. We found that only 17% of single CG

and CHG epimutations were located inside the identified C-DMRs. Despite this, our

analysis shows that region-level epimutation rates are similar to epimutation rates of

single cytosines (Fig. 3 and Additional file 2: Table S8). This observation can be ex-

plained by the fact that the total number of regions is also much smaller than the num-

ber of individual cytosines.

Functional consequences of differential methylation on gene expression

To assess if age-related cytosine methylation changes have functional consequences, we

performed mRNA-seq with three biological replicates for each branch of trees 13 and

14. On average, each library had over ~ 55 million reads and 96.8% mapping to the P.

trichocarpa var. Stettler genome (Additional file 2: Table S10). We used DESeq2 to

identify differentially expressed genes (DEGs) pairwise between branches [49] and iden-

tified a total of 2937 genes. The P. trichocarpa var. Stettler genome has 34,700
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Fig. 5 (See legend on next page.)
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annotated genes, so this differential expression gene set is 8.46% of all genes and 10.5%

of expressed genes.

Since the somatic accumulation of spontaneous methylation changes could affect

gene expression, we asked if transcriptional divergence also increases as a function of

tree age. We found that in contrast to somatic mutations and epimutations, the diver-

gence between leaf transcriptomes is much more heterogeneous and displays only a

weak and non-significant accumulation trend (Fig. 5a). Linear regression analysis

showed no statistically significant relationship between transcription and methylation

over time (P value = 0.1293). These results show that divergence in DNA methylation is

not accompanied by transcriptional divergence during tree aging, probably as a result

of gene expression being much more dynamic and responsive to current environments.

However, this global analysis does not rule out that DNA methylation changes at spe-

cific individual loci can have transcriptional consequences. To explore this in more detail,

we analyzed DMRs proximal to DEGs and correlated the methylation level of the DMR

with the expression level of the gene. The correlation is positive when a higher methyla-

tion level in the DMR is associated with higher expression of the gene and negative when

higher methylation is associated with lower expression of the gene. Regardless of where

the DMR was located relative to the gene, we observed positive DMR-DEG correlations

and negative DMR-DEG correlations. There was no bias for direction of correlation and

genomic feature type (Fig. 5b). The negative correlations represent cases where DNA

methylation is blocking cis-regulatory elements, whereas the positive correlations could

represent cases where increased accessibility to transcriptional machinery of the gene

leads to greater RdDM activity as observed previously [50].

We further focused on four specific examples where DEG-DMR correlations were

statistically significant (Additional file 1: Fig. S8). Of these four, three of the DMRs oc-

curred within 2 kb upstream of the transcription start site, and they have strong nega-

tive correlations (Fig. 5c). The DMR located in the untranslated region of a gene

encoding a mitochondrial oxoglutarate/malate carrier protein was positively correlated

with gene expression (Fig. 5d), although it remains unclear if this relationship is causal.

Taken together, our transcriptome analysis indicates that gene expression changes in

this poplar tree are largely independent of methylation at both the global and local

(See figure on previous page.)
Fig. 5 Gene expression is largely independent from divergence age and nearby cytosine methylation
except in a few examples. a Gene expression divergence is not significantly associated with divergence age.
The dots show the individual observed divergences, whereas the line represents the fit of the data to the
model. b Distribution of positive and negative correlations for differentially expressed genes and
overlapping/nearby DMRs. Positive correlation occurs when the higher methylation level is associated with
higher gene expression among the samples. c A significantly negatively correlated, tree-specific DMR and
DEG where the DMR occurs in the promoter region of the gene (Pearson’s correlation test, two-sided, N = 8,
adjusted P value = 0.0067). The higher methylation levels in the DMR for tree 13 branches are associated
with lower gene expression. d A significantly positively correlated, single gain DMR and DEG where the
DMR occurs in the 5′ untranslated region of the gene (Pearson’s correlation test, two-sided, N = 8, adjusted
P = 0.0141). The higher methylation level in the DMR for branch 13.1 is associated with greater gene
expression. For c and d, gene expression, as transcripts per million (TPM), is represented as points for the
individual replicates and as bar for mean among replicates. In the genome browser view, gene models and
transposable elements are shown at the top and methylome tracks are below. Vertical bars indicate
methylation at the position, where height corresponds to level and color is context, red for CG, blue for
CHG, and yellow for CHH. DMR is indicated by thick black horizontal line
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scale except for a few rare examples. This observation is at least partly consistent with

our model-based analyses, which suggest that somatic epimutations in this tree accu-

mulate neutrally (Shahryary et al. 2019, co-submission).

Discussion
Using a multi-omics approach, we were able to calculate the rates of somatic

mutations and epimutations in the long-lived perennial tree P. trichocarpa. Con-

sistent with the per-unit-time hypothesis, we find that the per-year genetic and

epigenetic mutation rates in poplar are lower than in A. thaliana, which is re-

markable considering that the former experienced hundreds of years of variable

environmental conditions. This observation supports the view that long-lived pe-

rennials may limit the number of meristematic cell divisions during their lifetime

and that they have evolved mechanisms to protect these cell types from the per-

sistent influence of environmental mutagens, such as UV radiation. Interestingly,

in contrast to the observed differences in per-year mutation and epimutation

rates, our analysis reveals strong similarities in the per-generation rates between

these two species. This close similarity further suggests that the per-generation

rates of spontaneous genetic and epigenetic changes are under strong evolution-

ary constraint, although it remains unclear from our experimental design how

many of these (epi) mutations will be successfully transferred to the next

generation.

The results presented here are most certainly an underestimate of the actual rate.

This may be a result of the sampling biased used in this study, as we were only

able to sample surviving branches and identify mutations that occurred early

enough that they are present in the majority of the cells sampled in the tissues

profiled. Perhaps variable environmental conditions lower the epimutation rate by

keeping the cells in sync, thus few differences can be observed. Alternatively, meri-

stematic cells that give rise to the sampled tissues have highly reinforced and well-

maintained DNA methylomes similar to observations in embryonic tissue [51–55].

Either scenario would imply that most of the identified epimutations are spontan-

eous in nature. Although the rate is different, the ordering in feature-specific epi-

mutation rates is the same between poplar and A. thaliana, suggesting that this is

a general pattern in plant genomes, which likely is derived from maintenance of

DNA methylation through mitotic cell divisions.

The biological significance of the majority of newly formed epimutations is un-

clear at this time, although most are likely neutral. It is noteworthy that some of

the identified epimutations are associated with expression variation; however, this

was a rare occurrence in this study. These results also reflect the rarity at which

epimutations linked to morphological variation are found in the laboratory and/or

field [27–31, 33]. One emerging hypothesis is that the majority of epimutations in

angiosperms are byproducts of maintenance of DNA methylation associated with

heterochromatin and that certain loci are more or less susceptible than others [45,

46, 56]. This link to maintenance processes is one commonality between the accu-

mulation of genetic and epigenetic changes that could explain why their rates are

fairly similar on a per cell division timescale.
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Conclusion
Taken together, our study provides unprecedented insights into the origin of nucleo-

tide, epigenetic, and functional variation in the long-lived perennial plant.

Methods
Sample collection and age estimation

The trees used in this study were located at Hood River Ranger District [Horse Thief

Meadows area], Mt. Hood National Forest, 0.6 mi south of Nottingham Campground

off OR-35 at unmarked parking area, 500′ west of East Fork Trail #650 across river, ca.

45.355313, − 121.574284 (Additional file 1: Fig. S1).

Cores were originally collected from the main stem and five branches from each

of five trees in April 2015 at breast height (∼ 1.5 m) for standing tree age using a

stainless-steel increment borer (5 mm in diameter and up to 28 cm in length).

Cores were mounted on grooved wood trim, dried at room temperature, sanded,

and stained with 1% phloroglucinol following the manufacturer’s instructions

(https://www.forestry-suppliers.com/Documents/1568_msds.pdf). Annual growth

rings were counted to estimate age. For cores for which accurate estimates could

not be made from the 2015 collection, additional collections were made in spring

2016. However, due to difficulty in collecting by climbing, many of the cores did

not reach the center of the stem or branches (pith) and/or the samples suffered

from heart rot. Combined with the difficulty in demarcating rings in porous woods

such as poplar Populus [57, 58], accurate measures of tree age or branch age were

challenging (Additional file 1: Fig. S2).

Simultaneously with stem coring, leaf samples were collected from the tips of each of

the branches from the selected five trees. Branches 9.1, 9.5, 13.4, 14.1, 15.1, and 15.5

were too damaged to determine reasonable age estimates and were removed from ana-

lysis. Branch 14.4 and the stems of 13.1 and 13.2 were estimated by simply regressing

the diameter of all branches and stems that could be aged by coring.

Nuclei prep for DNA extraction

Poplar leaves that had been kept frozen at − 80 °C were gently ground with liquid nitrogen

and incubated with NIB buffer (10mM Tris-HCL, PH8.0, 10mM EDTA PH8.0, 100mM

KCL, 0.5M sucrose, 4 mM spermidine, 1 mM spermine) on ice for 15min. After filtration

through miracloth, Triton x-100 (Sigma) was added to tubes at a 1:20 ratio, placed on ice

for 15min, and centrifuged to collect nuclei. Nuclei were washed with NIB buffer (con-

taining Triton x-100) and re-suspended in a small amount of NIB buffer (containing Tri-

ton x-100) then the volume of each tube was brought to 40ml and centrifuged again.

After careful removal of all liquid, 10ml of Qiagen G2 buffer was added followed by gen-

tle re-suspension of nuclei; then 30ml G2 buffer with RNase A (to final concentration of

50mg/ml) was added. Tubes were incubated at 37 °C for 30min. Proteinase K (Invitro-

gen), 30mg, was added and tubes were incubated at 50 °C for 2 h followed by centrifuga-

tion for 15min at 8000 rpm, at 4 °C, and the liquid gently poured to a new tube. After

gentle extraction with chloroform to isoamyl alcohol (24:1), then centrifugation and trans-

fer of the top phase to a fresh tube, HMW DNA was precipitated by addition of 2/3 vol-

ume of iso-propanol and re-centrifugation to collect the DNA. After DNA was washed

with 70% ethanol, it was air dried for 20min and dissolved thoroughly in 1× TE.
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Whole-genome sequencing

We sequenced Populus trichocarpa var. Stettler using a whole-genome shotgun sequen-

cing strategy and standard sequencing protocols. Sequencing reads were collected using

Illumina and PacBio. Both the Illumina and PacBio reads were sequenced at the De-

partment of Energy (DOE) Joint Genome Institute (JGI) in Walnut Creek, California,

and the HudsonAlpha Institute in Huntsville, Alabama. Illumina reads were sequenced

using the Illumina HISeq platform, while the PacBio reads were sequenced using the

RS platform. One 400-bp insert 2 × 150 Illumina fragment library was obtained for a

total of ~ 349× coverage (Additional file 2: Table S11). Prior to assembly, all Illumina

reads were screened for mitochondria, chloroplast, and phix contamination. Reads

composed of > 95% simple sequence were removed. Illumina reads less than 75 bp after

trimming for adapter and quality (q < 20) were removed. The final Illumina read set

consists of 906,280,916 reads for a total of ~ 349× of high-quality Illumina bases. For

the PacBio sequencing, a total of 69 chips (P6C4 chemistry) were sequenced with a

total yield of 59.29 Gb (118.58×) with 56.2 Gb > 5 kb (Additional file 2: Table S12), and

post error correction a total of 37.3 Gb (53.4×) was used in the assembly.

Genome assembly and construction of pseudomolecule chromosomes

The current release is version 1.0 release began by assembling the 37.3 Gb corrected

PacBio reads (53.4× sequence coverage) using the MECAT CANU v.1.4 assembler [39]

and subsequently polished using QUIVER v.2.3.3 [40]. This produced 3693 scaffolds

(3693 contigs), with a scaffold N50 of 1.9 Mb, 955 scaffolds larger than 100 kb, and a

total genome size of 693.8 Mb (Additional file 2: Table S13). Alternative haplotypes

were identified in the initial assembly using an in-house Python pipeline, resulting in

2972 contigs (232.3Mb) being labeled as alternative haplotypes, leaving 745 contigs

(461.5Mb) in the single haplotype assembly. A set of 64,840 unique, non-repetitive,

non-overlapping 1.0-kb syntenic sequences from version 4.0 P. trichocarpa var. Nisqu-

ally assembly aligned to the MECAT CANU v.1.4 assembly and used to identify mis-

joins in the P. trichocarpa var. Stettler assembly. A total of 22 misjoins were identified

and broken. Scaffolds were then oriented, ordered, and joined together into 19 chromo-

somes. In the syntenic marker FASTA file, each record identifier carried information

pertaining to the Nisqually chromosome where the sequence was extracted, as well as

the position in the chromosome. These markers, along with the annotated primary

transcripts from Nisqually, were aligned to the Poplar var. 14.5 assembly using BLAT.

The chromosome/position information was used to identify misjoins in the assembly.

Once the misjoins were corrected, the scaffolds were ordered and oriented using the

positional information contained in the syntenic markers/genes. A total of 117 joins

were made during this process, and the chromosome joins were padded with 10,000 Ns

[59]. Small adjacent alternative haplotypes were identified on the joined contig set. Al-

ternative haplotype (Althap) regions were collapsed using the longest common sub-

string between the two haplotypes. A total of 14 adjacent alternative haplotypes were

collapsed.

The resulting assembly was then screened for contamination. Homozygous single nu-

cleotide polymorphisms (SNPs) and insertion/deletions (InDels) were corrected in the

release sequence using ~ 100× of Illumina reads (2 × 150, 400-bp insert) by aligning the
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reads using bwa-0.7.17 mem [60] and identifying homozygous SNPs and InDels with

the GATK v3.6’s UnifiedGenotyper tool [61]. A total of 206 homozygous SNPs and 11,

220 homozygous InDels were corrected in the release. Heterozygous SNP/indel phasing

errors were corrected in the consensus using the 118.58× raw PacBio data [59]. A total

of 66,124 (1.98%) of the heterozygous SNP/InDels were corrected. The final version 1.0

improved release contains 391.2Mb of sequence, consisting of 25 scaffolds (128 con-

tigs) with a contig N50 of 7.5 Mb and a total of 99.8% of assembled bases in chromo-

somes. Plots of the Nisqually marker placements for the 19 chromosomes are shown in

Additional file 1: Fig. S9.

Genome annotation

Transcript assemblies were made from ~ 1.4 billion pairs of 2 × 150 stranded

paired-end Illumina RNA-seq GeneAtlas P. trichocarpa var. Nisqually reads, ~ 1.2

billion pairs of 2 × 100 paired-end Illumina RNA-seq P. trichocarpa var. Nisqually

reads from Dr. Pankaj Jaiswal, and ~ 430M pairs of 2 × 75 stranded paired-end

Illumina var. Stettler reads using PERTRAN [41] on P. trichocarpa var. Stettler

genome. About ~ 3M PacBio Iso-Seq circular consensus sequences were corrected

and collapsed by genome-guided correction pipeline on P. trichocarpa var. Stettler

genome to obtain ~ 0.5 million putative full-length transcripts. A total of 293,637

transcript assemblies were constructed using PASA [62] from RNA-seq transcript

assemblies above. Loci were determined by transcript assembly alignments and/or

EXONERATE alignments of proteins from A. thaliana, soybean, peach, Kitaake

rice, Setaria viridis, tomato, cassava, grape, and Swiss-Prot proteomes to repeat-

soft-masked P. trichocarpa var. Stettler genome using RepeatMasker [63] with up

to 2-kb extension on both ends unless extending into another locus on the same

strand. Gene models were predicted by homology-based predictors, FGENESH+

[64] FGENESH_EST (similar to FGENESH+, EST as splice site and intron input in-

stead of protein/translated ORF), EXONERATE [65], PASA assembly ORFs (in-

house homology constrained ORF finder), and from AUGUSTUS via BRAKER1

[66]. The best scored predictions for each locus are selected using multiple positive

factors including EST and protein support, and one negative factor: overlap with

repeats. The selected gene predictions were improved by PASA. Improvement in-

cludes adding UTRs, splicing correction, and adding alternative transcripts. PASA-

improved gene model proteins were subject to protein homology analysis to the

abovementioned proteomes to obtain Cscore and protein coverage. Cscore is a pro-

tein BLASTP score ratio to MBH (mutual best hit) BLASTP score, and protein

coverage is the highest percentage of protein aligned to the best of homologs.

PASA-improved transcripts were selected based on Cscore, protein coverage, EST

coverage, and its CDS overlapping with repeats. The transcripts were selected if its

Cscore is larger than or equal to 0.5 and protein coverage larger than or equal to

0.5, or it has EST coverage, but its CDS overlapping with repeats is less than 20%.

For gene models whose CDS overlaps with repeats for more than 20%, its Cscore

must be at least 0.9 and homology coverage at least 70% to be selected. The se-

lected gene models were subject to Pfam analysis and gene models whose protein

is more than 30% in Pfam TE domains were removed and weak gene models.
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Incomplete gene models, low homology supported without fully transcriptome sup-

ported gene models and short single exon (< 300-bp CDS) without protein domain

nor good expression gene models, were manually filtered out.

SNP calling methods

Illumina HiSeq2500 paired-end (2 × 150) reads were mapped to the reference genome

using bwa-mem [60]. Picard toolkit was used to sort and index the bam files. GATK

[61] was used further to align regions around InDels. Samtools v1.9 [67] was used to

create a multi-sample mpileup for each tree independently. Preliminary SNPs were

called using Varscan v2.4.0 [68] with a minimum coverage of 21.

At these SNPs, for each branch, we calculated the conditional probability of each po-

tential genotype (RR, RA, AA) given the read counts of each allele, following SeqEM

[69], using an estimated sequencing error rate of 0.01. We identified high-confidence

genotype calls as those with a conditional probability 10,000× greater than the prob-

abilities of the other possible genotypes. We identified potential somatic SNPs as those

with both a high-confidence homozygous and high-confidence heterozygous genotype

across the branches.

We notice that the default SNP calling parameters tend to overcall homozygous-

reference allele genotypes and that differences in sequencing depth can bias the relative

number of heterozygous SNPs detected. To overcome these issues, we re-called geno-

types using conditional probabilities using down sampled allele counts. To do this, we

first randomly selected a set number of sequencing reads for each library at each poten-

tial somatic SNP so that all libraries have the same sequencing depth at all SNPs. Using

the down-sampled reads, we calculate the relative conditional probability of each geno-

types by dividing the conditional probabilities by the sum of the conditional probabil-

ities of all three potential genotypes. These relative probabilities are then multiplied by

the dosage assigned to their respective genotype (0 for RR, 1 for RA, 2 for AA), and the

dosage genotype is the sum of these values across all 3 possible genotypes. Discrete ge-

notypes were assigned using the following dosage values: RR = dosage < 0.1; RA = 0.9 <

dosage < 1.1; AA = dosage > 1.9. Dosages outside those ranges are assigned a NA

discrete genotype. SNPs with an NA discrete genotype or depth below the down sam-

pling level in any branch of a tree were removed from further analysis. We performed

three replicates of this procedure for depths of 20, 25, 30, 35, 40, and 45 reads.

PacBio libraries for each branch were sequenced using the PacBio Sequel platform,

fastq files aligned to the P. trichocarpa var. Stettler14 reference genome using ngmlr

[70], and multi-sample mpileup files generated using in Samtools v1.9 [67] to quantify

the allele counts at the potential somatic SNPs. We used a minimum per-sample se-

quence depth of 20 reads and used an alternate-allele threshold of 0.1 to call a hetero-

zygote genotype in the PacBio data.

To identify high-confidence candidate somatic SNPs, we identified potential somatic

SNPs with the same genotypes across branches using both the Illumina-based PacBio-

based genotypes, only including SNPs with full data in all branches for both types of

genotypes. Of these, we only retained SNPs that are homozygous in a single branch or

have a single homozygous-to-heterozygous transition (and no reversion) going from

the lowest to highest branches.
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Estimating somatic nucleotide mutation rate

Building on the analytical framework developed in van der Graaf et al. (2015) and

Shahryary et al. 2019 (co-submission), we developed mutSOMA (https://github.com/

jlab-code/mutSOMA), a statistical method for estimating genetic mutation rates in

long-lived perennials such as trees. The method treats the tree branching structure as a

pedigree of somatic lineages and uses the fact that these cell lineages carry information

about the mutational history of each branch. A detailed mathematical description of

the method is provided in Additional file 3: Supplementary Text. But briefly, starting

from the .vcf* files from S samples representing different branches of the tree, we let

Gik be the observed genotype at the kth single nucleotide (k = 1, …, N) in the ith sam-

ple, where N is the effective genome size (i.e., the total number of bases with sufficient

coverage). With four possible nucleotides (A, C, T, G), Gik can have 16 possible geno-

types in a diploid genome, 4 homozygous (A|A, T|T, C|C, G|G) and 12 heterozygous

(A|G, A|T, …, G|C). Using this coding, we calculate the genetic divergence, D, between

any two samples i and j as follows:

Dij ¼
XN

k¼1
I Gik ;Gjk
� �

N − 1;

where I(Gik,Gjk) is an indicator function, such that, I(Gik,Gjk) = 1 if the two samples

share no alleles at locus k, 0.5 if they share one, and 0 if they share both alleles. We

suppose that Dij is related to the developmental divergence time of samples i and j

through a somatic mutation model MΘ. The divergence times can be calculated from

the coring data (Additional file 2: Table S14). We model the genetic divergence using

Dij ¼ cþ D•
ij MΘð Þ þ ϵij;

where ϵij ∼N(0, σ
2) is the normally distributed residual, c is the intercept, and D•

ijðMΘÞ
is the expected divergence as a function of mutation model M with parameter vector

ϴ. Parameter vector ϴ contains the unknown mutation rate δ and the unknown proportion

γ heterozygote loci of the most recent common “founder” cells of samples i and j. The the-

oretical derivation of D•
ijðMΘÞ and details regarding model estimation can be found in

Additional file 3: Supplementary Text. The estimation of the residual variance in the

model allows for the fact that part of the observed genetic divergence between any two

samples is driven both by genotyping errors as well as by somatic genetic drift as meri-

stematic cells pass through bottlenecks in the generation of the lateral branches.

Structural variant analysis methods

For structural variant (SV) analysis, PacBio libraries were generated for four branches

from the tree 13 and four branches from tree 14 with four sequencing cells sequenced

per branch using the PacBio Sequel platform. PacBio fastq files were aligned to the P.

trichocarpa var. Stettler reference genome using ngmlr v.0.2.6 [70] using a value of 0.01

for the “-R” flag. SVs were discovered and called using pbsv (pbsv v2.2.0, https://github.

com/PacificBiosciences/pbsv). SV signatures were identified for each sample using

“pbsv discover” using the “--tandem-repeats” flag and a tandem repeat BED file gener-

ated using trf v4.09 [71] for the P. trichocarpa var. Stettler genome. SVs were called
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jointly for all 8 branches using “pbsv call.” The output from joint SV calling changes

slightly depending on the order of the samples used for the input in “pbsv call,” so four

sets of SVs were generated using four different sample orders as input. We used a cus-

tom R script to filter the SV output from pbsv [59]. We remove low-complexity inser-

tions or deletions with sequence containing > 80% of a mononucleotide 8-mer, 50% of

a single type of binucleotide 8-mer, or 60% of two types of binucleotide 8-mers. We re-

quired a minimum distance of 1 kb between SVs. We removed SVs with sequencing

coverage of more than three standard deviations above the mean coverage across a

sample. After calling genotypes, any SVs with missing genotype data were removed.

Genotypes were called based on the output from pbsv using a custom R script

[59]. We required a minimum coverage of 10 reads in all sample and for one sam-

ple to have at least 20 reads. We required a minimum penetrance (read ratio) of

0.25 and at least 2 reads containing the minor allele for a heterozygous genotype.

We allowed a maximum penetrance of 0.05 for homozygous genotypes. For each

genotype, we assigned a quality score based on the binomial distribution-related

relative probability of the 3 genotype classes (RR, AR, AA) based on A:R read ratio,

using an estimated sequencing error of 0.032, and an estimated minimum allele

penetrance of 0.35. For a genotype with a score below 0.9 but with the same geno-

type at the SV as another sample with a score above 0.98, the score was adjusted

by multiplying by 1.67. Any genotypes with adjusted scores below 0.9 were con-

verted to NA. For deletions, duplications, and insertions, 10 representatives in dif-

ferent size classes were randomly selected and the mapping patterns of reads were

visually inspected using IGV v2.5.3 [72] to assign scores indicating how well the

visual mapping patterns support the SV designation. Scores were defined by the

following: “strong,” multiple reads align to the same locations in the reference gen-

ome that support the SV type and size; “moderate,” multiple reads align to the

same reference location for one side of the SV but align to different or multiple lo-

cations in the region for the other side of the SV; and “weak,” reads align to refer-

ence locations that indicate a different SV type or much different SV size.

The percent of genic sequence and tandem repeat sequence in deletions and duplica-

tions were calculated using the P. trichocarpa var. Stettler annotation and tandem re-

peat BED from above, respectively. Genome-wide expectations were derived by

separating the genome into 10-kb windows and calculating the percent genic and tan-

dem repeat sequence in each window. The distribution of genic and tandem repeat se-

quences in deletions and duplications were compared to genome-wide expectations

using the Kolmogorov-Smirnov two-sample test (one-sided, Nnull = 39,151, Ndel = 10,

433, Ndup = 630).

SVs showing variation between branches and identified in all 4 replicates are poten-

tial instances of somatic SV mutations or loss-of-heterozygosity gene conversions, and

the mapping positions of sequencing reads were visually inspected with IGV [72] to

confirm the variation at these SVs.

MethylC-seq sequencing and analysis

A single MethylC-seq library was created for each branch from leaf tissue. Libraries

were prepared according to the protocol described in Urich et al. [73]. Libraries were
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sequenced to 150 bp per read at the Georgia Genomics & Bioinformatics Core (GGBC)

on a NextSeq500 platform (Illumina). Average sequencing depth was ~ 41.1× among

samples (Additional file 2: Table S8).

MethylC-seq reads were processed and aligned using Methylpy v1.3.2 [74]. Default

parameters were used except for the following: clonal reads were removed, lambda

DNA was used as the unmethylated control, and binomial test was performed for all

cytosines with at least three mapped reads. The methylation levels were determined

using weighted methylation level, as mC / (mC + uC) where mC and uC are the num-

ber of reads supporting a methylated cytosine and unmethylated cytosine, respectively

(C/C + T) [44]. The sodium bisulfite conversion rates were benchmarked against spiked

in lambda DNA (which was unmethylated). All rates were well over 99% (Additional

file 2: Table S8).

Identification of differentially methylated regions

Identification of differentially methylated regions (DMRs) was performed using

Methylpy v1.3.2 [74]. All methylome samples were analyzed together to conduct an un-

directed identification of DMRs across all samples in the CNN (N = A, C, G, T) context.

Default parameters were used. Regions with at least three differentially methylated cy-

tosines (DMS) were combined into raw DMRs. DMS with different directionality (hyper

vs hypo) were not combined. Only DMRs that are at least 40 bp long with five or more

cytosines (three of which are differentially methylated) with at least one read were used

for subsequent analysis. For each DMR, the weighted methylation level was computed

as mC / (mC + uC) where mC and uC are the number of reads supporting a methylated

cytosine and unmethylated cytosine, respectively [44].

To identify epigenetic variants in these samples, we used a one-sided z-test to test for

a significant difference in methylation level of DMRs pairwise between branches [59].

For each pair, only DMRs with at least 5% difference in methylation level were used, re-

gardless of underlying context. Resulting P values were adjusted using Benjamini-

Hochberg correction (N = 383,600) with FDR = 0.05 [75], and DMRs are defined by ad-

justed P value ≤ 0.05.

Identification of methylated regions

For each sample, an unmethylated methylome was generated by setting the number of

methylated reads to zero while maintaining the total number of reads. Methylpy DMR

identification program [74] was applied to each sample using the original methylome

and unmethylated methylome with the same parameters as used for DMR identifica-

tion. Regions less than 40 bp long, fewer than three DMS, and fewer than five cytosines

with at least one read were removed. Remaining regions from all samples were merged

using BEDtools v2.27.1 [76].

Assigning genomic features to DMRs

A genomic feature map was created such that each base pair of the genome was

assigned a single feature type (transposable element/repeat, promoter, untranslated re-

gion, coding sequence, and intron) based on the previously described annotation. Pro-

moters were defined as 2 kb upstream of the transcription start site of protein-coding
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genes. At positions where multiple feature types could be applicable, such as a trans-

poson in an intron or promoter overlapping with adjacent gene, priority was given to

transposable elements, untranslated regions, introns, coding sequences, and promoters.

Positions without an assignment were considered intergenic. Genomic feature content

of each DMR and methylated region was assigned proportionally based on the number

of bases in each category.

GO Enrichment analysis of promoter DMRs was run using topGo v2.34.0 with node-

Size = 10 and weighted Fisher’s exact for BP, CC, and MF ontologies [77]. Significance

was determined for P value < 0.001.

Identification of pseudo-allele methylation

We aimed to categorize the DMRs into three pseudo-allele states: homozygous methyl-

ated, heterozygous, and homozygous unmethylated. First, DMRs were filtered on the

following criteria: (i) at least 25% change in weighted CG methylation level between the

highest and lowest methylation level of the samples; (ii) at least one sample had a CG

methylation level of at least 75%; and (iii) at least two “covered” CG positions. A “cov-

ered” CG is defined as having at least one read for both symmetrical cytosines in all

samples. After filtering, 4488 regions were used for analysis.

For each region in each sample, we next categorize the aligned reads overlapping the

region [59]. If at least 35% of its “covered” CG sites are methylated, the read is catego-

rized as methylated. Otherwise, it is an unmethylated read. Finally, we define the

pseudo-allele state by the portion of methylated reads; homozygous unmethylated: ≤

25%, heterozygous: > 25% and < 75%, and homozygous methylated: ≥ 75%.

The null distribution was created by randomly shuffling the filtered DMRs in the

genome such that each simulated region is the same length as the original and it has at

least two “covered” CGs. The above procedure was applied and number of epigenotype

changes was determined. This was repeated for a total of 10 times.

The following special classes of DMRs were identified: highly variable, single loss,

single gain, and tree specific. A DMR is highly variable if there were pseudo-allele

changes between all adjacent branches. A DMR is single loss if all but one branch

was homozygous methylated, and one was homozygous unmethylated. Similarly, a

DMR is single gain if all but one branch was homozygous unmethylated and one

branch was homozygous methylated. Finally, a DMR is “tree specific” if all tree 13

branches were homozygous unmethylated and all tree 14 branches were homozy-

gous methylated or vice versa.

Estimating somatic epimutation rate

We previously developed a method for estimating “germline” epimutation rates in A.

thaliana based on multi-generational methylation data from mutation accumulation

lines [34]. In a companion method paper to the present study (Shahryary et al. 2019,

co-submission), we have extended this approach to estimating somatic epimutation

rates in long-lived perennials such as trees using leaf methylomes and coring data as in-

put. This new inference method, which we call AlphaBeta, treats the tree branching

structure as a pedigree of somatic lineages using the fact that these cell lineages carry

information about the epimutational history of each branch. AlphaBeta is implemented
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as a bioconductor R package (http://bioconductor.org/packages/devel/bioc/html/Alpha-

Beta.html). The results detailing the significance of epimutation accumulation as de-

scribed in Shahryary et al. (2019) are contained in the Additional file 2: Table S9. Using

this approach, we estimate somatic epimutation rates for individual CG, CHG, and

CHH sites independently, but also for regions. For the region-level analysis, we first use

the differentially methylated regions (DMRs) identified above. Sampling from the distri-

bution of DMR sizes, we then split the remainder of the genome into regions, which

we refer to as “non-DMRs.” Per sample, we aggregate the total number of methylated

Cs and unmethylated Cs in each region corresponding to a DMR or a non-DMR and

used these counts as input for AlphaBeta.

In a replication experiment for tree 13 and tree 14, we sequenced the methy-

lomes of leaves from seven branches sampled from the same branches (3 samples

from tree 14 and 4 samples from tree 13). Initial quality control of the methylome

data revealed that five of the seven samples (14–3.1, 13–1.1, 13–2.1, 13–3.1, 13–

5.1) clustered well with their branch-matched replicates. However, two of the sam-

ples from tree 14 (14–4.1 and 14–5.1) revealed contamination making them un-

usable. Therefore, they were excluded from further analysis. Using the remaining

five replicates, we re-estimated the genome-wide gain and loss rates and found that

they were very similar to those obtained with the original samples (Additional file

1: Fig. S6a-d). In addition to a “complete” tree analysis (involving samples from

both tree 13 and tree 14), we also examined epimutation accumulation in tree 13

alone (Additional file 1: Fig. S6e). Similar to the trends we observed with the ori-

ginal samples (Additional file 1: Fig. S6e-h), 5mC divergence increased as a func-

tion of age in the replicate data, although these accumulation patterns are not

significant due to the small sample sizes (N = 4).

mRNA-seq sequencing and analysis

Total RNA was extracted from leaf tissue in each branch using the Direct-zol RNA

MiniPrep Plus kit (Zymo Research) with Invitrogen’s Plant RNA Reagent. Total RNA

quality and quantity were assessed before library construction. Strand-specific RNA-seq

libraries were constructed using the TruSeq Stranded mRNA LT kit (Illumina) follow-

ing the manufacturer’s instructions. For each sample, three independent libraries (tech-

nical replicates) were constructed. Libraries were sequenced to paired-end 75-bp reads

at the GGBC on a NextSeq500 platform (Illumina). Summary statistics are included in

the Additional file 2: Table S10.

For analysis, first, paired-end reads were trimmed using Trimmomatic v0.36 [78].

Trimming included removing TruSeq3 adapters, bases with quality score less than 10,

and any reads less than 50 bp long. Second, remaining reads were mapped to the Stet-

tler genome with HiSAT2 [79] using default parameters except to report alignments for

transcript assemblers (--dta). The HiSAT2 transcriptome index was created using ex-

tracted splice sites and exons from the gene annotation as recommended. Last, tran-

scriptional abundances for genes in the reference annotation were computed for each

sample using StringTie v1.3.4d [80]. Default parameters were used except to limit esti-

mates to reference transcripts. TPM (transcripts per million) values were outputted to

represent transcriptional abundance.
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Identification of differentially expressed genes

Differentially expressed genes (DEGs) were identified using DeSeq2 v1.22.2 [49]. The

count matrix was extracted from StringTie output files and the analysis was performed

using the protocol (ccb.jhu.edu/software/stringtie/index.shtml?t = manual#deseq).

Abundances for all samples were joined into one DESeq dataset with α = 0.01. Gene

abundance was compared between all samples pairwise. In each pair, a gene was con-

sidered differentially expressed if the adjusted P value ≤ 0.01 and the log2-fold change

≥ 1. Genes differentially expressed in any pair were included for subsequent analysis.

Overlap of DMRs and DEGs

We identified DMRs which overlapped the promoter region (2 kb upstream of tran-

scription start site) and gene body of annotated genes. For each DMR-gene pair, we

computed Pearson’s product moment correlation coefficient between the weighted

methylation level of the DMR and average gene abundance among replicates in TPM.

Next, looking only at genes which were previously identified as differently expressed,

we performed two-sided Pearson’s correlation test for each DMR-DEG pair to test for

statistically significant correlations. Resulting P values were multiple test corrected with

Benjamini-Hochberg correction (N = 382, FDR = 0.05) [75]. Adjusted P values ≤ 0.05

were considered significantly correlated.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13059-020-02162-5.

Additional file 1: Fig. S1. Photographs of the trees used in this study. Photographs of tree 4 (a), tree 9 (b), tree
13 and 14 (c), and tree 15 (d) with branches labeled. Leaf samples were collected from each branch. Fig. S2.
Schematic drawings of additional trees in the study. Schematic drawings of tree 4 (a), tree 9 (b), tree 13 and 14 (c),
and tree 15 (d) with estimated terminal branch ages and age where branch meets the main stem (gray italic). Leaf
samples were collected from each branch for genomic sequencing libraries. Fig. S3. Duplications contain a higher
proportion of genic sequences and deletions contain a higher proportion of repeat sequence. a) For deletions (Del,
green) and duplications (Dup, purple) structural variants grouped by size, distribution of the proportion of the SV
sequence that overlaps with an annotate gene. Same as a except proportion of the SV sequence that overlaps
transposons and repeat sequences. Genome-null (gray) is measured for 10-kb windows across the genome. Dia-
mond represents the group mean. Number of SVs in each group is specified above b. Fig. S4. Genome weighted
methylation levels. Genome-wide weighted methylation level for mCG (red), mCHG (blue), and mCHH (yellow) for
samples in tree 13 and tree 14. Fig. S5. Somatic epimutation rates for single sites, regions, and by genomic feature
in the CHH context. Methylation divergence by branch time divergence for single sites and regions (a) and gen-
omic features (b). c) Estimated methylation gain rate, α, by feature. d) Estimated methylation loss rate, β, by feature.
e) Estimated ratio of loss to gain, β/α. An F-test was used comparing the neutral model vs null model (Supplemen-
tary Text). See Table S9 for P values. Error bars represent bootstrapped 95% confidence intervals of the estimates. If
there is no significant effect of branch age for the feature, it is marked n.s. Abbreviations: Pro, promoter (2 kb up-
stream of TSS); TE, transposable elements and repeats; and IGR, intergenic regions. Fig. S6. Comparison of original
and replicate methylome data sets. (a) mCG divergence of the original data vs the replicated data set from the
same tree. F- and P value show significant accumulation of mCG changes over time in both data sets. (b) estimated
rate of methylation gain and (c) loss; (d) ratio of loss over gain of methylation. (e) mCG divergence, (f) gain rate, (g)
loss rate and (h) loss over gain ratio for only branch 13 of both the original and the replicate data set. The F- and P
values in (e) suggest no significant time-dependent accumulation of epimutations among leafs of only branch 13.
Error bars in (b), (c), (f), (g) represent the standard errors generated during bootstrapping. Fig. S7. Pseudo allele
states of DMRs among samples. a) Pseduo allele state of each tested DMR (N = 4488) for each branch. b) Branches
13.1 and 14.2 proportionally have more homozygous methylated pseudo alleles than the older branches. Possible
pseudo allele states are homozygous methylated (dark green), heterozygous (medium green), and homozygous
unmethylated (light green). Fig. S8. Gene expression of differentially expressed genes is rarely correlated to methy-
lation level of nearby differentially methylated regions. Each point represents a differentially expressed gene-
differentially methylated region pair where the DMR is in the gene body or within 2-kb upstream. Correlation is
the Pearson’s correlation between gene expression, average of replicates as TPM, and weighted methylation level.
Pearson’s correlation test, two-sided, was performed on each pair then multiple test corrected using Benjamini-
Hochberg (N = 382, FDR = 0.05). Red dashed line is the significance threshold, adjusted P value ≤0.05. Significant
DEG-DMR pairs are colored red. Fig. S9. Syntenic Nisqually marker placements on the Populus trichocarpa var. Stet-
tler chromosomes. Each point represents a Nisqually marker positioned along the Nisqually chromosome along the
x-axis and Stettler chromosome along the y-axis.
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Additional file 2: Table S1. High-confidence SNPS identified in Tree 13 with corresponding branch genotypes. In
the genotypes, “RR” is homozygous for reference allele and “RA” is heterozygous for alternative allele. Table S2.
High-confidence SNPS identified in Tree 14 with corresponding branch genotypes. In the genotypes, “RR” is homo-
zygous for reference allele and “RA” is heterozygous for alternative allele. Table S3a. Fold-Enrichment of SNPs in
different genomic feature types. Table S3b. Fold-Enrichment of SNPs in different transposable element classes.
Table S4. Nucleotide mutation rate estimates for five filtering depths and multiple replicates. GS is the effective
genome size. Table S5. Total PacBio sequencing output for the branches used for structural variation analysis.
Table S6. Counts of SVs separated by type and size. Count is the mean of four replicates of ‘pbsv call’ with standard
deviation in parentheses. Table S7. Support for SV designation of random subset of SVs based on visual evaluation
of read mapping patterns in IGV. Percentages, by row, in parentheses. Table S8. Whole-genome bisulfite sequen-
cing summary statistics. Table S9. Calculated epimutation rates by sequence context and genomic feature. Alpha
is the rate of gaining methylation. Beta is the rate of losing methylation. F-test compares the neutral model (de-
grees of freedom 23) vs null model (d.o.f. 27). Table S10. mRNA-seq library and mapping statistics. Table S11.
Genomic libraries included in the Populus trichocarpa var. Stettler14 genome assembly and their respective assem-
bled sequence coverage levels in the final release. *Average read length of PacBio reads. Table S12. PacBio library
statistics for total yield of the 64 chips included in the Populus trichocarpa var. Stettler14 genome assembly and
their respective assembled sequence coverage levels. Table S13. Summary statistics of the raw output of the
MECAT whole genome shotgun assembly. The table shows total contigs and total assembled base pairs for each
set of scaffolds greater than the size listed in the left-most column. Table S14. Whole-genome bisulfite sequen-
cing summary statistics for replicate samples.

Additional file 3. Supplementary text. Includes an expanded description of how epimutation rates were
estimated.

Additional file 4. Review history.
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