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Pan-genome inversion index reveals evolu-
tionary insights into the subpopulation
structure of Asian rice

Yong Zhou1,2,13, Zhichao Yu 3,13, Dmytro Chebotarov4,13, Kapeel Chougule5,13,
Zhenyuan Lu5, Luis F. Rivera1, Nagarajan Kathiresan6, Noor Al-Bader1,
Nahed Mohammed 1, Aseel Alsantely 1, Saule Mussurova1, João Santos1,
Manjula Thimma1, Maxim Troukhan 7, Alice Fornasiero 1, Carl D. Green8,
Dario Copetti 2, David Kudrna 2, Victor Llaca 9, Mathias Lorieux10,
Andrea Zuccolo 1,11,14 , Doreen Ware5,12,14 , Kenneth McNally 4,14 ,
Jianwei Zhang 2,3,14 & Rod A. Wing 1,2,4,14

Understanding and exploiting genetic diversity is a key factor for the pro-
ductive and stable production of rice. Here, we utilize 73 high-quality genomes
that encompass the subpopulation structure of Asian rice (Oryza sativa), plus
the genomes of two wild relatives (O. rufipogon and O. punctata), to build a
pan-genome inversion index of 1769 non-redundant inversions that span an
average of ~29% of the O. sativa cv. Nipponbare reference genome sequence.
Using this index, we estimate an inversion rate of ~700 inversions per million
years in Asian rice, which is 16 to 50 times higher than previously estimated for
plants. Detailed analyses of these inversions show evidence of their effects on
gene expression, recombination rate, and linkage disequilibrium. Our study
uncovers the prevalence and scale of large inversions (≥100 bp) across the
pan-genome of Asian rice and hints at their largely unexplored role in func-
tional biology and crop performance.

Asian rice (Oryza sativa) is a staple cereal crop that has played an
essential role in feeding much of the world for millennia1,2. Since
the world population is expected to increase to approximately 10
billion by 2060–20703, the rice community is searching for novel
ways to breed new varieties that are nutritious, sustainable, and

climate resilient2. One source of the raw material required to
meet this urgent demand is the standing natural variation that
exists in the genomes of the more than 500,000 accessions of
rice and its wild relatives deposited in germplasm banks around
the world2, i.e., single nucleotide polymorphisms (SNPs),
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insertions/deletions (INSs/DELs), translocations (TRAs), and
inversions (INVs).

Inversions have been reported as an important class of structural
variation across all life forms, beginning with the first reported inver-
sion inDrosophila in 19214, followed by discoveries in fungi5, bacterial6,
plants7–12, and animals13–17. In many cases, inversions have been found
to play important roles in genetic recombination, genome evolution,
speciation, and phenotypic variation in these species. For example, in
Drosophila subobscura, inversions have been hypothesized as a driver
of genomic structural evolution due to suppressed recombination in
inverted regions that contain adaptive genes18. In birds, the great tit
(Parusmajor) has a 64megabase (Mb) inversion that coversmore than
90% of chromosome 1A (5% of a 1.2 Gb genome size), whichwas shown
to be involved in speciation19. In humans, many INVs have been found
to be associated with human diseases, e.g., hemophilia A20, neurode-
generative diseases21, autoimmune diseases22, mental disorders23, and
gene expression abnormalities15,24. In plants, INVs have been reported
to play roles in, for example - local adaptation10,25, genome-
environment associations25, gene regulation10,26,27, flowering time26,
seed germination26, and fruit shape27.

In rice and the genusOryza, inversion studies have been limited to
small and mid-size inversions (10 bp–500Kb) as a consequence of the
reliance on short-read data for their detection or larger inversions
(100bp–5.5Mb) via single or a limited number of pairwise genome
scans. For example,Wanget al. performed agenome scanof inversions
in the O. sativa cv. Nipponbare genome (i.e., IRGSP RefSeq) using
short-read resequencing data from453high-coverage genomes (>20×)
from the 3K Rice Genome Project (3K-RGP), and detected 152± 62
inversions per genome with a size range of 127.1 ± 19.4 Kb28,29. A phy-
logenetic analysis of this dataset, including other SV data, demon-
strated that SVs could be used to define the population structure of
Asian rice28. Fuentes et al. investigated the entire 3K-RGP dataset
similarly and identified 1,255,033 inversions, with the vast majority
(85%) falling in a size range of 10 bp–100Kb11. Using a genome scan-
ning strategy, a scan of the IRGSP RefSeq, plus reciprocal genome
alignments to nine Asian rice and twoAA-genomewild relatives (i.e.,O.
rufipogon and O. longistaminata) confirmed the presence a previously
detected ~5Mb inversion spanning the centromere of chromosome 6
in four Xian-indica (XI) varieties, relative to four Geng-japonica (GJ)
varieties, as well as two outgroup species30. A broader phylogenetic
study interrogating two cultivated and 11 wild Oryza genomes using
SVs resulted in the identification of 12 inversions (i.e., 60–300Kb) that
the authors inferred potentially led to the rapid diversification of the
AA genome species within a 2.5 million years (MY) span31. Recently, a
genome scan of 33 rice genome assemblies identified 954 inversions
ranging in size from 100bp to ~5Mb12. This study identified larger
inversions that included seven inversions greater than 1Mb.

Although these studies combined contributed to a preliminary
understanding of inversions in rice, a comprehensive analysis of
inversions that utilize ultra-high-quality reference genome sequences
that takes into account the population structure of Asian rice, remains
uncharted. To reveal a comprehensive understanding of inversions
(≥100bp) and explore their evolutionary impacts in Asian rice, we
interrogated a set of 73 high-quality genome assemblies - as a pan-
genome proxy - that spanned the K = 1532 population structure of cul-
tivated Asian rice, plus two additional high-quality de novo assembled
genomes from a representative species of the progenitor of Asian rice
(O. rufipogon) and the BB genome species - O. punctata, as outgroups.

Here, we describe and characterize a pan-genome inversion index
(PGII) of 1769non-redundant inversions, ofwhich 1085 are identified in
this study. Phylogenetic analysis of the PGII shows that 66 of the 73
genomes can be subdivided across the expected K = 15 subpopulation
structure of Asian rice, while the remaining seven fall into two Xian/
Indica clusters that have yet to be characterized. Clustering the index
into 1426 inversion clusters shows that most clusters are O. sativa

species-specific (n = 885), followed by O. rufipogon species-specific
(n = 96),O. punctata species-specific or AA genome fixed (n = 322), and
basal to O. sativa/O. rufipogon divergence, or introgression (n = 123).
Characterization of subsets of the index shows evidence for both
recombination suppression as well as trace patterns of linkage dis-
equilibrium, both of which suggest that some inversionsmay be under
positive selection. Finally, with this index we estimate a population-
level inversion rate for Asian rice of 735–749 inversions per million
years, which is 16–50 times higher than previous estimates for plants.

Results
The 18-genome data package
To investigate the genome inversion landscape of Asian rice from a
population structure perspective, we first combined a set of 16 pre-
viously published high-quality genomes32–34 that represent the K = 15
population structure of O. sativa, plus the largest Xian/indica (XI)
admixed subpopulation (XI-adm:Minghui 63 (MH63)) to create a “Rice
Population Reference Panel” (RPRP - https://yongzhou2019.github.io/
Rice-Population-Reference-Panel/). This panel was annotated with a
uniform pipeline to minimize methodological artifacts using RNA-Seq
and Iso-Seq data generated or collected from all 16 genomes as evi-
dence (Table 1, Supplementary Tables 1–3, Supplementary Fig. 1,
Supplementary Data 1, and Supplementary Note 1).

To anchor this panel within a phylogenetic context, we long-read
sequenced, anddenovo assembled two additional genomes fromboth
a representative species of the progenitor of Asian rice - i.e., O. rufi-
pogon (AA) and the African BB genome outgroup species -O. punctata
(Table 1, Supplementary Table 4, and Supplementary Fig. 2). Both
species are diploid and have similar genome sizes as Asian rice. These
genomes were assembled to a similar quality as the RPRP (i.e.,
BUSCO>95%, number of gaps <50, ContigN50 > 10Mb) (Supplemen-
tary Table 4 and Supplementary Note 1).

All 18 genomes and their annotations are henceforth referred to as
the “18-genome data package” (See “18-genome data package” in the
Supplementary Note 1 section for a complete description of this
data set).

Creation of a pan-genome inversion index for Asian rice
To ensure the detection of the majority of inversions present in cul-
tivated Asian rice, we selected an additional 57 publicly available long-
read genome assemblies (out of 94) for analyses that met similar
quality standards present in the 18-genome data package, for a total of
75 genomes (Supplementary Fig. 3, Supplementary Data 2, and Sup-
plementary Note 2).

To detect inversions, we compared pairwise all 74 reference
genome assemblies with the IRGSP RefSeq34, following a workflow as
detailed in Supplementary Note 3 (Supplementary Fig. 4 and Supple-
mentary Table 5), and identified a total of 12,141 inversions (≥100bp)
(Supplementary Data 3), 1769 of which were non-redundant (Supple-
mentary Data 4). Finally, since several inversions had overlapping
coordinates (i.e., 80% of their length), they were clustered to obtain a
set of 1426 clustered inversions (Supplementary Data 4). We then
validated a subset of 264 inversions from four randomly selected
genome assemblies (i.e., LM, NABO, CM, andMH63) using PacBio long-
reads, and found that 97.7% of the inversion breakpoints could be
detected (Supplementary Table 6), thereby confirming the high
accuracy of our detection strategy.

To determine if the use of 75 genomes was sufficient to call the
majority of 100 bp or greater inversions in the pan-genome of Asian
rice, we performed a permutation test (n = 1000), and found that the
use of ~60genomeswas sufficient to capture themajority of inversions
with allele frequencies greater than 2 out of 75 genomes (Fig. 1a, b).
These results demonstrate that employing 75 genomes, that bridge the
K = 15 population structure of cultivated rice, can yield a robust pan-
genome inversion index for Asian rice.
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Fig. 1 | Rice inversion index summary. a, b Resampling permutation test to
identify the relationship between the number of genomes and all inversions and
shared (non-genome specific) inversions, respectively; c Density of inversion
lengths; d Bionano validation of inversions larger than 1Mb, i.e., Clu-INV0100180,
Clu-INV0100660, and Clu-INV0600550. In each panel, the top line shows the

opticalmapused as a reference, the bottom line shows the genome assembly of the
variety with the inversion. Gray lines connect restriction sites that are aligned (blue
regions), while yellow segments show unaligned regions. Black boxes highlight the
position each inversion. Source data are provided as a Source Data file.

Table 1 | Assembly and annotation statistics of the 18-genome data package

Acronyms Variety name/Accession ID Species/genome Subpopulationa GenBank accession Assembly
size (Mb)

Repeat Annotated locib

IRGSP IRGSP-1.0/NIPPONBARE O. sativa-AA (Asian rice) GJ-temp GCA_001433935.1 373.25 51.79% 37,140

CMeo CHAO MEO::IRGC 80273-1 O. sativa-AA (Asian rice) GJ-subtrp GCA_009831315.1 376.86 47.41% 36,601

Azu Azucena O. sativa-AA (Asian rice) GJ-trop1 GCA_009830595.1 379.63 52.56% 36,623

KeNa KETAN NANGKA::IRGC 19961-2 O. sativa-AA (Asian rice) GJ-trop2 GCA_009831275.1 380.76 50.30% 36,609

ARC ARC 10497::IRGC 12485-1 O. sativa-AA (Asian rice) cB GCA_009831255.1 378.46 49.50% 36,423

PR106 PR 106::IRGC 53418-1 O. sativa-AA (Asian rice) XI−1B2 GCA_009831045.1 391.18 50.45% 36,405

MH63 Minghui 63 O. sativa-AA (Asian rice) XI-adm GCA_001623365.2 387.43 53.41% 38,047

IR64 IR 64 O. sativa-AA (Asian rice) XI−1B1 GCA_009914875.1 386.7 53.55% 36,065

ZS97 Zhenshan 97 O. sativa-AA (Asian rice) XI−1A GCA_001623345.2 387.33 53.41% 37,651

Lima LIMA::IRGC 81487-1 O. sativa-AA (Asian rice) XI−3A GCA_009829395.1 392.63 48.93% 36,217

KYG KHAO YAI GUANG::IRGC
65972-1

O. sativa-AA (Asian rice) XI−3B1 GCA_009831295.1 393.74 53.93% 36,212

GoSa GOBOL SAIL (BALAM)::IRGC
26624-2

O. sativa-AA (Asian rice) XI−2A GCA_009831025.1 391.77 51.01% 36,222

LiXu LIU XU::IRGC 109232-1 O. sativa-AA (Asian rice) XI−3B2 GCA_009829375.1 392.03 51.66% 36,378

LaMu LARHA MUGAD::IRGC 52339-1 O. sativa-AA (Asian rice) XI−2B GCA_009831355.1 390.2 51.25% 36,299

N22 N22 (N 22::IRGC 19379-1) O. sativa-AA (Asian rice) cA1 GCA_001952365.2 382.95 52.82% 36,262

NaBo NATEL BORO::IRGC 34749-1 O. sativa-AA (Asian rice) cA2 GCA_009831335.1 383.72 50.64% 36,196

O. ruf O. rufipogon PNG91-7::IRGC
106523-1

O. rufipogon-AA (Asian rice
progenitor)

– GCA_023541355.1 462.58 56.54% –

O. pun O. punctata:: IRGC 105690 O. punctata-BB (Outgroup) – GCA_000573905.2 422.39 53.21% –

Previously published genomes and annotations are cited.
aSubpopulations: GJ =Geng/Japonica where trop = tropical, subtrp = subtropical; cB = circum/Basmati; XI =Xian/Indica; cA = circum-Aus.
bGene annotations can be obtained from Gramene (https://www.gramene.org/) or the RPRP website (https://yongzhou2019.github.io/Rice-Population-Reference-Panel/data/).
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Our inversion index was compared with previous studies in rice,
i.e., 3K-RGP11 and the pan-genome study of 33 rice genomes12. Inver-
sions were treated as identical if they matched the following two cri-
teria: 1) the inversion length differencewas smaller than 200bp, and 2)
the differences between the coordinates of breakpoints of inversions
were smaller than 100 bp. In doing so, we found that of the 1769
nonredundant inversions identified, 38.6% have already been reported
(Supplementary Data 4).

As expected, more inversions were observed when we compared
the BB genome outgroup (O. punctata) than AA genomes to the IRGSP
RefSeq: 337 (total length = 15.16Mb) (Supplementary Data 3), followed
by the AA genome outgroup (O. rufipogon): 230 (total length = 12.95
Mb). On average, each O. sativa genome was found to contain 164
inversions, ranging from 33 (TG22) to 230 (YX1) (Supplementary
Data 3). We found a larger number of inversions (i.e.,164–230) when
comparing the O. sativa XI-subgroup genomes to the GJ-temp: IRGSP
RefSeq than when comparing the O. sativa GJ-subgroup genomes
(33–201 inversions) to the same reference, which is consistent with the
long divergence time estimate between the XI and GJ varietal groups
(i.e., 360,000–400,000 years35).

The total lengthof inversions fromonegenometo another ranged
from 14.95Mb (cA2: NATEL BORO) to 255 Kb (GJ-temp: TG19) (Sup-
plementary Data 3) and totaled 117.75Mbacross all 75 genomes tested.
We identified 470 clustered inversions shorter than 1 Kb and 11 clus-
tered inversions greater than 1Mb relative to the IRGSP RefSeq (Fig. 1c
and Supplementary Data 4). These extra-large inversions (>1Mb) were
found on seven chromosomes (i.e., 1, 4, 5, 6, 8, 10, and 11) and included
seven of which were previously reported (i.e., Clu-INV0600550
(4.5Mb)30, Clu-INV0800800 (1.1Mb)36, Clu-INV0100660 (1.8Mb)12,
Clu-INV0500270 (3.1Mb)12, Clu-INV0800450 (5.2Mb)12, Clu-
INV0800470 (1.2Mb)12, Clu-INV110070 (1.1Mb)12, and four were iden-
tified in this study (i.e., Clu-INV0100180 (2Mb), Clu-INV0400050
(1.3Mb), Clu-INV0400650 (4.3Mb), and Clu-INV1000940 (1.3Mb)).
Three of the 11 clustered inversions (i.e., Clu-INV0100180, Clu-
INV0100660, and INV0600550) were validated with available Bionano
optical maps (Fig. 1d), while the remaining eight were not due to the
lack of Bionano data.

Chromosomal distribution of the pan-genome inversions index
To determine if the inversions detected were uniformly distributed
across all chromosomes, we tested for uniformity using the
Kolmogorov–Smirnov (KS) test, and found that only one

chromosome, chromosome 4, deviated significantly from uniformity
(i.e., p = 3e−04; Fig. 2a, b, and Supplementary Data 5). To check if
inversion size played a role in this chromosome 4 anomaly, we repe-
ated the KS test by classifying inversions according to their lengths
(<1 Kb, 1–5 Kb, 5–10Kb, and >10 Kb).We found no significant deviation
from uniformity except for the >10Kb inversion class on chromosome
4 (Supplementary Fig. 5 and Supplementary Data 5), where inversions
are mainly concentrated near the centromere on both the short and
long arms of chromosome 4. These results demonstrate that the
inversions detected appear evenly distributed genome-wide, with one
exception.

To search for inversion hotspots,weperformed a 200Kbwindow-
based analysis across all chromosomes. We defined the top 2% of all
windows with the highest frequency of inversion start coordinates as
hotspots. This analysis revealed 47 putative hotspots, including 239
independent inversions where 12 inversions overlapped with cen-
tromeres (on chromosomes 7 and 8) but none with telomeres (Fig. 2a
and Supplementary Data 6).

Phylogenetic analysis of the pan-genome inversion index
To determine if the pan-genome inversion index could be used to
phylogenetically distinguish each of the 75 high-quality genomes into
the expected K = 15 subpopulation structure, we used the unweighted
pair group with arithmetic mean distance tree method, with the O.
punctata (BB) andO. rufipogon (AA) genomes as outgroups (Fig. 3). As
shown in Fig. 3, 66 of the 73 genomes could be subdivided across the
expected subpopulation structure of Asian rice, while the remaining
seven fell into two XI clusters that have yet to be characterized.

Inversion rate estimations for Asian rice
It was estimated that the AA genomes of the Oryza diverged from the
BB genome type about 2.5 million years ago (MYA)2, which equates to
an inversion rate of 67.4 inversions per million years (Table 2 and
Fig. 4a). If we use the inferred AA genome diversification (i.e.,O. sativa
GJ-temp IRGSP vs. O. rufipogon) rate of ~0.50 net new species/million
years2,31, then the estimate is 230 inversions per MY (Table 2
and Fig. 4a).

Regarding O. sativa subpopulations, it was estimated that tem-
perate japonica (GJ-temp) first diverged from proto-japonica about
14,200 years ago37, thus we used this population divergence time for
comparisons within Geng/japonica. For the computation of time to a
MRCA for a pair of genomes, we added the expected time to coalesce
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within the proto-japonica population38, which can be estimated to be
10,000 generations based on previous estimates of effective popula-
tion size37. For a comparison involving tropical japonica, care should
be taken to exclude inversions that possibly originated in Xian/Indica
through introgression. Thus, out of the 431 clustered inversions that
were segregatedwithinGJ, we focusedon 170 thatwere not segregated
within non-GJ subpopulations.Todealwith thepossibility of inversions
that originated in XI but did not appear in our data set, we also filtered
out 26 inverted regions closer toXI than toGJbasedon the 3K-RGPSNP
data39. The remaining 144 inversions were used to compute the num-
ber of inversions between each pair of GJ genomes. The average
number of (filtered) inversions between two GJ genomes is 20.86,

which translates to an inversion rate of 735 inversions per MY. Calcu-
lations involving comparisons only between a temperate GJ and
another GJ population lead to a similar estimate of 749 inversions per
MY (Table 2 and Fig. 4a).

Species and population scale analysis
Of the 1426 clustered inversions detected (Supplementary Data 4), we
classified them into four different groups: Inversions segregating in
O. sativa (S), Inversions segregating in both O. sativa and O. rufipogon
(SR),O. rufipogon specific (R), andO. punctata specific or AA-fixed (i.e.,
ancestral state not clear) (P) (Fig. 4a). As a result, 1303 (91.4%) appeared
to be species-specific, i.e., O. sativa (S): 885 (totaling 54.07Mb),
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Table 2 | Inversion rate estimations

Comparison Time to MRCA (MY) Number of inversion
polymorphisms

Inversion mutation rate (IR)

Raw Usablea Number of inversions per million years

O. punctata - NB 2.5 323 323 64.6

O. rufipogon - NB 0.5 230 230 230

GJ-temp vs other GJ (average) 0.0142 82.96 21.27 749

Average of pairs of GJ genomes 0.0142 20.86 735

MRCA most recent common ancestor, MY million years.
aInversions shared with subpopulations other than GJ were excluded to avoid counting regions that were possibly introgressed from populations with higher times to MRCA.

Article https://doi.org/10.1038/s41467-023-37004-y

Nature Communications |         (2023) 14:1567 5



O. rufipogon (R): 96 (totaling 4.66Mb), andO. punctata specific or AA-
fixed (P): 322 (totaling 10.06Mb) (Fig. 4a). The O. sativa specific
inversions (S) were further classified into three categories: i.e., the
IRGSP-1.0 RefSeq represents ancestral state (S1), IRGSP-1.0 RefSeq
represents the derived state (S2), all O. sativa represent the derived
state (fixed inversions) (S3), in which 872 (48.7Mb), 11 (5.2Mb), and 2
(72.5 Kb) inversions for S1, S2 and S3 were observed, respectively
(Supplementary Table 7). The remaining 123 non-specific inversions
were found to segregate in both O. sativa and O. rufipogon (i.e., ori-
ginated beforeO. sativa andO. rufipogon divergence, or introgression)
and totaled to about 3.3Mb in size, including 121 inversions with
IRGSP-1.0 RefSeq as the ancestral state (SR1), and 2 inversions with
IRGSP-1.0 RefSeq as the derived state (SR2) (Supplementary Table 7).

To gain deeper insight into the distribution of inversions in rice at
the population scale, we studied the 872 O. sativa specific inversions
(IRGSP-1.0 RefSeq has ancestral state) across the 3K-RGP data set28.
Beginning with a manually curated set of 8720 inversion alignment
patterns at their breakpoints (i.e. 872 inversion alignment patterns
across ten accessions), we classified their short-read alignment pat-
terns into four categories (i.e., presence of both breakpoints =
inversion, absence of both breakpoints = no inversion, presence of a
single breakpoint = inversion + deletion, and no data at both break-
points =NA) (Supplementary Fig. 6a). These categories were then used
to train a machine learning workflow to search for the presence or
absence of 2,636,928 alignment patterns for 872 inversions across the
3K-RGP data set (Supplementary Fig. 6b, c and Supplementary
Table 8). Of note, this analysis identified 241 inversions and 273
accessions with more than 30% missing inversion data and were thus
filtered out, leaving a final data set of 631 inversions across 2751
accessions for downstream analysis (Supplementary Data 7 and Sup-
plementary Note 4). These 631 inversions were then classified into
genome-specific, subpopulation-specific, group-specific, and group-
shared inversions based on their inversion frequencies (Supplemen-
tary Data 8). As shown in Fig. 4b, 94 genome-specific, 49 subpopula-
tion-specific, and 37 group-specific inversions (including 30, 3, and
4 specific inversions to XI, cA, and GJ groups, respectively) were
observed. We also observed that 451 inversions were shared among
different groups, of which 386 (61.1% of total O. sativa specific inver-
sions) were shared across the GJ, XI, cA, or cB groups, 58 were shared
between the XI and cA groups, and seven were shared between the GJ
and cB groups (Fig. 4b). In total, these results reveal that 91% of the
1426 cluster inversions tested were species-specific (i.e., O. punctata,
O. rufipogon, and O. sativa) at the population scale, and may provide
clues to their possible roles in speciation over evolutionary time.

Characterization of transposable element content within inver-
sions and their breakpoints
Transposable elements (TEs) are known to be associated with
inversions11,12. Thus, we analyzed the TE content across the inversion

index and at their breakpoints. The total amount of TE related
sequences present in the pan-genome inversion index was 63.4%,
which is significantly higher (Student’s test, p =0.0003) than the
average TE content present in the 18-data genome data package at
51.3% (Supplementary Data 9). Furthermore, out of the complete set of
1769 inversions, 888 showed partial or total similarity to TEs at both
breakpoint regions (+/−100 bp from the breakpoints), and another
389 showed partial or total similarity to TEs in at least one breakpoint.
These results demonstrate that TEs are enriched within inversions and
their breakpoints in Asian rice.

Analysis of these breakpoints revealed that both long terminal
repeat retrotransposons (LTR-RTs, i.e., Ty3-Gypsy and Ty1-Copia) and
DNA TE Mutator-like elements (MULEs) were significantly enriched
(student’s test, p = 5.08E−11 to 0.027), when the frequency of their
presence at the 3538 breakpoints was compared to 35,380 randomly
selected genomic locations (i.e., ten replicates) (Fig. 5a). We further
studiedTEs at thebreakpoint of each inversion thatwere shared across
all Asian rice genomes. In doing so, we identified 17 TE families (i.e., 13
Ty3-Gypsy, 1 Ty1-Copia, 2 CACTA, and 1 Mutator) present at the
breakpoints of more than 10 inversions (Fig. 5b and Supplementary
Data 10). An example of an inversion enriched in TEs, including the
internal and LTR portions of at least three different LTR-RTs, is shown
in Fig. 5c.

Since it is known that inverted repeats can trigger ectopic
recombination, thereby leading to genome inversions40,41, we inter-
rogated 100 randomly selected O. sativa inversions for direct or
inverted repeats in close proximity to inversion breakpoints. This
analysis revealed the presence of direct repeats (including micro-
satellites) at the breakpoints of both ends of 11 inversions, and inverted
repeats at singlebreakpoints of 30 inversions (SupplementaryData 11).
For the remaining 118 inversion breakpoints (i.e., 59 inversions), no
clear evidence could be found for the presence of inverted repeats at
their inversion breakpoints. Of note, our analysis only considered
inverted repeats longer than 10 bp, even though shorter have been
shown to trigger inversions as well42. For this reason, we caution that
our estimate of the presence of inverted repeats at inversion break-
points should be considered on the lower end of the spectrum.

Characterization of gene content within inversions and their
breakpoints
Based on the pan-genome inversion index, we identified a total of ~971
annotated genes per genome within inversions or at their breakpoints
(Supplementary Data 12). To investigate the possible effects of inver-
sions on gene expression, we interrogated a set of transcriptome
datasets derived from three O. sativa subpopulations (i.e., XI-adm:
MH63, XI−1A: ZS97 and GJ-temp: Nipponbare (i.e., dataset#2 - see
Methods). Based on a comparison of transcript abundance levels
between Nipponbare and MH63 and ZS97 (across four tissue types -
root, panicle, young leaf, andmature leaf) we detected that 5–12 genes
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from MH63 and 4–11 genes from ZS97 within inversions, 2–7 genes
fromMH63 and 2–4 genes fromZS97 in inverted flanking regions, and
19–42 genes fromMH63 and 9–30 genes from ZS97 that were located
in non-inverted randomly resampled 20Kb regions, were differentially
expressed (DEG, fold change >2, p value <0.01) (Supplementary Fig. 7).

To investigate the effect of inversions on the transcription of
genes located at inversion breakpoints - i.e., about 55 genes per gen-
ome (Supplementary Data 12), we interrogated both our baseline RNA-
Seq datasets (dataset#1- see Methods) and dataset#2 for changes in
transcript abundance. On average, transcript evidence for 28 of the 55
genes per genome could be detected in the tissues tested (Supple-
mentary Data 12). Of these, transcript abundance of an average of 20
genes per genome did not change due to the presence of duplicated
genes at both ends of their inversion breakpoints (Supplementary
Data 12). An example of this observation is represented by two OsNAS
genes (NAS1 and NAS2) located at the breakpoints of INV0300350
(~4.3 Kb) (Fig. 6a, b). The remaining ~8 genes per genome were single
copy and were disrupted the inversion events, leading to the absence
of transcript evidence (Supplementary Data 12). For example, tran-
scripts of the Nipponbare Fbox gene (Os11g0532600) could be
detected in the four tissues tested. However, the first exon of this gene
was disrupted in MH63 by INV1101460, resulting in transcript ablation
(Fig. 6c, d).

Recombination rate and genomic inversions
To evaluate the effect of inversions on recombination frequency, a
previously published recombinant inbred line (RIL-10) population of
210 inbred lines43 derived from a cross between O. sativa cv. XI-adm:
MH63 and XI−1A: ZS97 was investigated. We detected 78 inversions
between MH63 and ZS97, totaling 3.58Mb and 3.51Mb in size, based
on the MH63 and ZS97 genome assemblies, respectively (Supple-
mentary Data 13). The recombination rate along each chromosome
was assessed by comparing genetic and physical distances between
neighboring bins. The average recombination rate for each chromo-
some ranged from 5.95 (chromosome6) to 9.92 (chromosome 12) cM/
Mb, and varied from 0 to 153.93 cM/Mb across the genome with an
average of 6.98 cM/Mb (Supplementary Fig. 8a). The average recom-
bination rate over the 78 inverted regions was 4.00 cM/Mb
(0–23.26 cM/Mb), which is significantly lower (Student’s t test,
p =0.0002) than that observed genome-wide (Supplementary Fig. 8b).
These results indicate that a marked suppression of genetic recombi-
nation is associated with inversions.

Effect of large inversions on population SNP variation
The occurrence of inversions can affect DNA polymorphism at the
population level in several ways, including increased divergence in the
inverted region and changes in linkage disequilibrium (LD) patterns40.
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The latter is particularly interesting as it can affect SNPs that are
mapped to positions megabases apart, and can be a confounding
factor in LD-based analyses. To determine whether large O. sativa
inversions (>100Kb) left a trace in patterns of LD along the IRGSP
RefSeq, we used the 3K-RGP dataset to examine LD blocks near
inverted regions (n = 88) (Supplementary Data 14). An inversion fixed
in a populationmay lead to the disruption of LD blocks, in which some
SNPs flanking the inversion on one side are in LD with SNPs on the
distal part of the inversion, but not on the adjacent part (Fig. 7), due to
the reversed order of SNPs inside the inverted region in samples that
carry the inversion allele. By an LD block wemean only a set of SNPs in
high LD (r2 > 0.8 in this analysis).

Next, we examined the entire 3K-RGP variation data set and
searched for LD blocks that connect the flanking regions of inversions,
having no SNPs in the proximal parts of each inversion. Such blocks
(Fig. 7) were found in nearly all large inversions (126 out of 147 [85.7%],
or 74 out of 88 [84%] inversion clusters) (Supplementary Data 14) with
exceptions falling into two categories: i.e., inversions in regions of
complex chromosomal rearrangements (Chr04:14.1–15Mb,
Chr11:6.6–6.85Mb, Chr11:9.4–9.7Mb), and three putative recent
inversions (INV0401400, INV0500310, INV1000040), each of which
were found in single genomes and may lack sufficient frequencies in a
population to contain traces of recombination. Some of the disrupted
LDblocks contained a particularly large number of SNPs andwere seen
as a distinctive checkered pattern on LD heatmaps (Fig. 7). This com-
paratively large number of SNPs along with low haplotype diversity,
despite the presence of recombination, could be a consequence of
selective pressure.

Discussion
Inversions are an important class of structural variations that have
been shown to play important roles in the suppression of recombi-
nation that can lead to the selection of adaptive traits, reproductive

isolation and eventual speciation, and are quite common in
plants31,40,41. For example, over the 50–60 MY history of the Poaceae,
where gene order has been largely conserved, Ahn and Tanksley
showed (using molecular genetic maps) that multiple inversions and
translocations occurred during the evolution of maize and rice from a
common ancestor42.

Here, we present a comprehensive analysis of the inversion
landscape of Asian rice at the population structure level with the
discovery of 1769 non-redundant inversions that range in cumulative
size from 0.3Mb to 15Mb (Supplementary Data 3). This analysis
allowed us to estimate inversion rates at multiples levels (i.e., genome
type (AA vs. BB: 67.4 inversions per MY), AA species (O. sativa vs. O.
rufipogon: 320 inversions per MY), and O. sativa populations (K= 15:
735–749 inversions perMY), all of whichwere 2.1–4.3×, 10.6–21.3×, and
16.6–50× higher than previously estimated40, respectively. Huang and
Rieseberg40 predicted that these earlier inversion rate estimates for
plants should be considered as underestimates (15–30 inversions per
MY), as they were dependent on the quality of the genomes analyzed,
and other factors, which bears true with our analyses. These inversion
rate estimates over such a short time period may be reflective of high
fixation rates of rearrangements in plants44, high chromosomal evo-
lution rates in annual plants45–47, and intense human selection since the
dawn of agriculture11,28.

Pan-genomes, first described in bacteria48, can be defined as a
representation of the entire set of genes within a species, consisting of
a core genome - containing sequences shared between all individuals
of the species - and the ‘dispensable’ genome. To date, five pan-
genomes have been published for Asian rice (summarized in Table 3),
where three reported inversions, none of which were validated. To
compare our data with the first reported inversion genome scan11, we
extracted the inversion coordinates (i.e., 2402 INVs, average total
length43.3 Kb) from the sameset of 15 accessions used to generate our
Rice Population Reference Panel and found that only 200 could be
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Fig. 6 | Transcript abundance of genes located at inversion breakpoints. a Two
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validated with dot plots (a 91.7% false positive rate) (Supplementary
Table 9), 196 of which overlapped with our inversion index. The 6
remaining contained 2 that overlapped, and only 4 that were not
present in our inversion index (Supplementary Data 15). These ana-
lyses combined reveal the limitations of inversion callers with short
read data and provide a cautionary note as to the validity of many of
the inversions cataloged to date.

More recently, Qin et al. identified 718 inversions using 29 PacBio
genomes of Asian rice mapped to the IRGSP RefSeq, 557 of which
overlapped with our analysis and the remaining 161 could not be
validated. Although informative, a combination of genomes that
bridge the K = 15 population structure of Asian rice and a minimum of
60 genomes are required for a comprehensive analysis of inversions in
Asian rice, as demonstrated here (Fig. 1).

Several key factors led to our ability to generate a definitive pan-
genome inversion index for cultivated Asian rice. The first was our use
of a set 75 high-quality reference genomes that span the K = 15 popu-
lation structure of Asian rice32 (Supplementary Data 2), plus 2 high-
quality genomes from the wild ancestors of rice that served as phylo-
genetically anchored outgroup species (Supplementary Table 1). Sec-
ondly, we did not computationally collapse these 75 genomes into a
pan-genome (e.g., genome graph), but maintained all 75 rice genomes
in their native state. This was key to our ability to precisely compare all
genomes one-by-one. Lastly, we interrogated the 3K-RGP data to
estimate and validate the population genetics of each inversion. As
sequencing costs continue to plummet, the ease at which ultra-high-
quality genomes can be generated, and with computational power
exceeding current limits49–51, we predict that there will no longer be a
need to computationally generate pan-genomes to perform similar
analyses as demonstrated here across much larger genomes, such as
wheat (genome size = 15Gb)52–54.

The Asian rice pan-genome inversion index is the first step on our
quest to precisely discover all standing natural variation that exists in
Asian rice and eventually the genusOryza as awhole. The next stepwill

be the generation of a digital genebank for Asian rice whereby rese-
quencing data from >100,000 accessions will be mapped to our Rice
Population Reference Panel. Preliminary data (unpublished) shows
that we can now easily call SNPs with resequencing data from >3000
individuals in 5 days per genome or less using high-performance
computational workflows optimized for GATK455 software. Such call
rates will undoubtedly increase over the next year with a targeted rice
digital genebank release date of January 1st, 2025.

Methods
Sequence and assembly
Seed and/or tissue from O. rufipogon (IRGC 106523) and O. punctata
(IRGC 105690) species were obtained from the International Rice
Research Institute (IRRI), Philippines. The O. rufipogon accession was
selected as a true O. rufipogon representative based on its origin
(Papua New Guinea, reproductively isolated from rice cultivation) and
phenotype. The two genomes were sequenced to a minimum of 100×
coverage using PacBio long-read technology (PacBio RSII), and were
assembled and validated to a PSRefSeq quality level following the
identical strategy as described in Supplementary Note 1. The Bench-
marking Universal Single-Copy Orthologs (BUSCO v4.0) software
package56 was employed to evaluate the gene space completeness of
each assembly.

Genome annotation
Genome annotation used PacBio Iso-Seq and Illumina RNA-Seq data
derived from RNA isolated root, panicle, and young leaf tissue from
Nipponbare and 13 newly sequenced O. sativa accessions32 as baseline
transcript evidence (i.e., RNA-Seq dataset#1). In addition, we collected
deep RNA-Seq data from O. sativa cvs. Nipponbare, Minghui 63 and
Zhenshan 97 (RNA-Seq dataset#257) for upgrading their annotations
with the same pipeline and downstream transcriptome analyses. Pac-
Bio Iso-Seq data was deposited in NCBI under BioProject
PRJNA760839. The RNA-Seq dataset#1 is deposited in NCBI under
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BioProject PRJNA659864. RNA-Seq dataset#2 is retrieved from NCBI
BioProject PRJNA59707057.

Protein coding genes for the 16 O. sativa genomes above were
predicted using MAKER-P (3.01.03)58 including expression evidence,
homology and ab initio gene predictors FGENESH (v.8.0.0)59,60, SNAP
(0.15.7)59,60. RepeatmaskingwasperformedwithRepeatMasker (http://
www.repeatmasker.org) using an Oryza specific repeat library31.
Expression evidence included reference guided transcript assemblies
generated using StringTie (v1.3.4a)61 and Cufflinks (v2.2.1)61,62. To gen-
erate assembled transcripts, quality inspected RNA-Seq reads from
each library were mapped to their respective genomes using STAR
(v2.5.3a)63 with an iterative 2-pass mapping approach in which splice
junctions generated from the first round were used to refine align-
ments in the subsequent round. Mapped reads from each library were
merged, sorted, and indexedusing SAMTools (v1.9)64 to generate input
for transcript assembly programs. All software packages were run with
default options. High quality full length transcripts were clustered
using CD-HIT (v4.6)65 for 95% sequence identity using parameters -c
0.95 -n 10 -d 0 -M 3000. The clustered transcripts were further filtered
for intron retention events using SUPPA266. Additional transcript and
homology evidence was used31 to run MAKER-P with keep_preds
option set to 1. The gene structure of the predictedmodels was further
improved using PASA (v2.4.1)67 using full length cDNA and EST’s
downloaded fromGenBank with the query “EST [Keyword] ANDOryza
sativa [Organism]”. Functional domain identification was completed
with InterProScan (v5.38-76.0)68. TRaCE (https://github.com/warelab/
TRaCE)69 was used to assign canonical transcripts based on domain
coverage, protein length, and similarity to transcripts assembled by
Stringtie (v1.3.4a)61. Annotation quality was assessed with MAKER-P
generated Annotation Edit Distance (AED) values70 and BUSCO,
respectively. Only transcriptswithAED scores <1were retained. Finally,
gene annotations were imported to Ensembl core databases, verified,
and validated for translation using the Ensembl API71. All genome
annotations are available at the Gramene PanOryza database (https://
oryza.gramene.org/) and the Rice Population Reference Panel (RPRP,
https://yongzhou2019.github.io/Rice-Population-Reference-Panel/
data/).

Genome visualization
For alignment, analysis, visualization, and public availability, we
uploaded the 18-genome data package into the Persephone® multi-
genome browser (https://web.persephonesoft.com/). The types of
data tracks visualized include gene models, marker locations, BLAST
matches, RNA-Seq coverage and sequence tracks. As the genomes are
closely related, the maps could be aligned by connecting short
sequence tags (100bp) derived from the IRGSP-1.0 RefSeq and map-
ped onto the other 17 genomes using BLASTN, as shown in Supple-
mentary Fig. 2.

Transposable element annotation
All 16 cultivated O. sativa, plus the O. rufipogon and O. punctata gen-
omes were re-annotated using the output of the latest version of the
EDTA (v1.7.4)72 transposable element (TE) annotation pipeline. The
entire output was loaded into RepeatMasker (v 4.0.8)73, with the
exception of predicted helitron elements thatwere skipped becauseof
a high false positive rate.

Identification of genomic inversions and assessments
To discover large inversions (>100 bp), we first tested four dif-
ferent analysis workflows (https://gitlab.kaust.edu.sa/zhouy0e/sv-
for-o.sativa)74 on two genomes, i.e., GJ-temp: IRGSP-1.0 and XI-
adm: MH63 (the genome of Minghui 63 accession).

Workflow 1: The MH63 genome assembly was split into over-
lapping reads of 50Kb in length at 5 Kb step intervals, resulting in ~10×
coverage. The reads were then mapped onto the IRGSP-1.0 genomeTa
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sequence using the tool CoNvex Gap-cost alignMents for Long Reads
(NGMLR, v0.2.7)75. Inversionswere calledwith SVIM (v1.1.0)76, retaining
only inversions with a depth greater > 6 that passed the caller’s filtra-
tion criteria.

Workflow 2: Steps were the same as in workflow 1, except that
Sniffles (v1.0.7)75 was used to call inversions.

Workflow 3: The MH63 genome assembly was aligned to IRGSP-
1.0 reference sequence using Minimap2 (v 2.15)77. This step was fol-
lowedby filtration for identity greater than 90% and length longer than
100bp. Inversions were called using SyRI (i.e., Synteny and Rearran-
gement Identifier, v1.4)78.

Workflow 4: Steps were the same as in workflow3, except the
alignment tool used, i.e., Nucmer, included with the MUMmer (v4)79

software package.
To assess the accuracy of the four workflows, dot-plots of the

syntenic regions including the putative inversions were generated to
visually validate the inversions. Out of all workflows, workflow4 was
selected based on our validation criteria. As a final validation check of
workflow 4, PacBio raw reads were also applied for validation of a
subset inversions. Raw reads of query genomes were mapped to the
IRGSP RefSeq, and the assemblies of the query genomes themselves. If
breakpoints could be observed in the reference but not in the
assemblies of the query genomes, the breakpoints were called as
‘supported’ by the PacBio raw reads, and vice versa.

Subsequently, the sequences of all 74 genomes were aligned
to the IRGSP RefSeq with the MUMmer79, filtering the alignments
for a minimum identity of 90%, and minimum length of 100 bp,
and the coordinates were retrieved using the function “show-
coords” of MUMmer79. Finally, inversions were called using the
SyRI tool (v1.4)78 with default parameters, which provided VCFs
(v.3) with ID, start, end of reference and query genome coordi-
nates that was leveraged for pan-genome comparisons
downstream.

Pan-genome inversion index of 75 high-quality genomes
Seventy-four inversion vcffiles derived from 74 genomes compared to
the IRGSP RefSeq were generated. Briefly, vcf files were sorted
according to chromosome ID, coordinates and strand, and were
merged using SURVIVOR (v1.0.7)80, run under default parameters
(https://github.com/fritzsedlazeck/SURVIVOR/wiki), except for the
maximum allowed distance of 10 bp. In this case, inversions having
start and end coordinates nomore different than 10 bpwere collapsed
and considered as single inversions.

Genome-wide distribution of the pan-genome inversion index
To investigate the genome-wide distribution of the pan-genome
inversion index the Kolmogorov–Smirnov (KS) test was performed
on the coordinates of inversions81,82. For each chromosome, we per-
formed 10,000 simulations of uniformly distributed positions of the
same number as the inversions reported for each chromosome and
calculated p values (the rate of uniform inversion distribution in
simulations (p values > 0.05) based on the Monte Carlo method. In
addition, inversions were further classified into different lengths
(<1 Kb, 1–5 Kb, 5–10 Kb, and >10Kb) and tested for uniform distribu-
tion independently. The p values were adjusted using the
Benjamini–Hochbergprocedure83,84 to reduce the falsepositive rate on
a per-chromosome basis.

Inversion rate estimations
Toestimate the inversion rate (IR) across thepan-genomeofAsian rice,
we consideredpairsof populations orgenomeswith existing estimates
of divergence times to a most recent common ancestor (MRCA), and
divided the total number of inversions by twice the time to the MRCA
(TMRCA, corresponding to the total branch length of the genealogy on

two nodes), i.e. the estimate is calculated using the following equation:

IR =
Number of INVs

2× TMRCA
ð1Þ

Differential transcript abundance analysis within inversions
To investigate the effect of an inversion on gene expression, we sear-
ched for differences in transcript abundance within inversions in Asian
rice based on two RNA-Seq datasets (dataset#1 and dataset#2). FPKM
(Fragments Per Kilobase of exon model per Million mapped frag-
ments) values were identified following an accurate pipeline85, which
included HISAT2 (version 2.2.1)86 for alignment, and StringTie
(v1.3.4a)61 to obtain normalized FPKM values. Taking into account
different transcript abundances between the two RNA-Seq datasets
(2 Gb for dataset#1 vs 6 Gb for dataset#2), we used different minimum
filtration of, i.e., FPKM>0.1 in RNA-Seqdataset#1 and FPKM> 1 in RNA-
Seq dataset#2. Differential Transcript Abundance (DTA) of dataset#2,
was carried out by edgeR (3.1.0)87 with p value <0.01 and abundance
change >2 cutoffs.

Genome recombination rate of inversions
To study the genome recombination rate of inversions, we used
genetic data based on a RIL population derived from accessions
O. sativa cv. XI-adm: Minghui 63 and XI−1A: Zhenshan 9788,89.
Briefly, re-sequencing data was obtained from 210 RILs and a Bin
Map containing 1619 bins was generated. The physical positions
of each bin were derived from updated versions both the MH63
and ZS97 reference genomes89. Then, a genetic map based on the
RILs panel of 1619 bins was constructed using the MSTMap
algorithm90. By comparing genetic and physical distances
between neighboring Bin Map markers, we estimated the relative
changes of the recombination rate of the two genomes91. Then,
we compared recombination rates in the bins that overlapped
with inversions and genome-wide, respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing data has been submitted to NCBI. The assembly data of
IRGSP-1.0/NIPPONBARE (GCA_001433935.1), CHAOMEO::IRGC 80273-
1 (GCA_009831315.1), Azucena (GCA_009830595.1), KETAN NANG-
KA::IRGC 19961-2 (GCA_009831275.1), ARC 10497::IRGC 12485-1 (GCA_
009831255.1), PR 106::IRGC 53418-1 (GCA_009831045.1), Minghui 63
(GCA_001623365.2), IR 64 (GCA_009914875.1), Zhenshan 97 (GCA_
001623345.2), LIMA::IRGC 81487-1 (GCA_009829395.1), KHAO YAI
GUANG::IRGC 65972-1 (GCA_009831295.1), GOBOL SAIL (BALA-
M)::IRGC 26624-2 (GCA_009831025.1), LIU XU::IRGC 109232-1 (GCA_
009829375.1), LARHA MUGAD::IRGC 52339-1 (GCA_009831355.1), N22
(N 22::IRGC 19379-1) (GCA_001952365.2), NATEL BORO::IRGC 34749-1
(GCA_009831335.1), O. rufipogon PNG91-7::IRGC 106523-1 (GCA_
023541355.1), and O. punctata:: IRGC 105690 (GCA_000573905.2)
were deposited in GeneBank of NCBI. The raw sequencing data of O.
rufipogon and O. punctata generated in this study were deposited in
NCBI under BioProject PRJNA609053 and PRJNA13770, respectively.
PacBio Iso-Seq data for all accessions in this study was deposited in
NCBI under BioProject PRJNA760839. The RNA-Seq dataset#1 was
deposited in NCBI under BioProject PRJNA659864. RNA-Seq dataset#2
was retrieved from NCBI BioProject PRJNA597070. The details
are also listed in Table 1 and the Rice Population Reference Panel
[https://yongzhou2019.github.io/Rice-Population-Reference-Panel/
data/]. Source data are provided with this paper.
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Code availability
Code for the different inversion calling workflows are available at the
Rice Population Reference Panel [https://yongzhou2019.github.io/
Rice-Population-Reference-Panel/software/]74.
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