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One sentence summary: 
A multi-genome analysis of maize reveals previously unknown variation in gene content, 

genome structure, and methylation.  

 
Abstract: 
We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 

26 inbreds that serve as the founders for the maize nested association mapping population. The 

data indicate that the number of pan-genes exceeds 103,000 and that the ancient tetraploid 

character of maize continues to degrade by fractionation to the present day. Excellent contiguity 

over repeat arrays and complete annotation of centromeres further reveal the locations and 

internal structures of major cytological landmarks. We show that combining structural variation 

with SNPs can improve the power of quantitative mapping studies. Finally, we document 

variation at the level of DNA methylation, and demonstrate that unmethylated regions are 

enriched for cis-regulatory elements that overlap QTL and contribute to changes in gene 

expression.  
 

 

Main text: 
 

Maize is the most widely planted crop in the world and an important model system for 

the study of gene function. The species is known for its extreme genetic diversity, which has 

allowed for broad adaptation throughout the tropics and intensive use in temperate regions. 

Much of its success can be attributed to a remarkable degree of heterosis when divergent 

inbred lines are crossed to make F1 hybrids. Nevertheless, most current genomic resources are 

referenced to a single inbred, B73. Yet prior data suggest the B73 genome contains only 63-

74% of the genes and/or low-copy sequences in the full maize pan-genome (1–4). Moreover, 

there is extensive structural polymorphism in non-coding and regulatory genomic regions that 

has been shown to contribute to variation in numerous traits (5). In recent years, additional 

maize genomes have been assembled, allowing limited characterization of the species pan-

genome and the extent of structural variation (2, 6–10). However, comparisons across genome 

projects are often confounded by differences in assembly and annotation methods. 

The maize Nested Association Mapping (NAM) population was developed as a means to 

study the genetic architecture of quantitative traits (11). Twenty-five founder inbred lines were 

strategically selected to represent the breadth of maize diversity including lines from temperate, 
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tropical, sweet corn, and popcorn germplasm (12). Each NAM parental inbred was crossed to 

B73 and selfed to generate 25 distinct populations of 200 recombinant inbred lines that combine 

the advantages of linkage and association mapping for important agronomic traits (13). 

Important biological infrastructure continues to be developed around these lines (e.g. (14–16)) 

but comprehensive genomic resources are needed to fully realize the power of the NAM 

population. 

Here we describe the 25 assembled and annotated genomes for the NAM founder 

inbreds and an improved reference assembly of B73 (Table S1). In our comprehensive 

characterization of maize genomic diversity, we evaluate the maize pan-genome and its 

fractionation from a tetraploid ancestor, visualize the diversity of transposons and tandem 

repeat arrays, deploy enzymatic methyl-seq and ATAC-seq to characterize the pan-epigenome, 

and identify structural and epigenetic variation that impact phenotype. 

 

Consistency and quality of genome assemblies 
 

The 26 genomes were sequenced to high depth (63-85X) using PacBio long-read 

technology, assembled into contigs using a hybrid approach (see Methods), corrected with long-

read and Illumina short-read data, scaffolded using Bionano optical maps, and ordered into 

pseudomolecules using linkage data from the NAM recombinant inbred lines and maize pan-

genome anchor markers (4). Assembly and annotation statistics far exceed nearly all available 

maize assemblies, with the total length of placed scaffolds (2.102-2.162Gb) at the estimated 

genome size of maize, a mean scaffold N50 of 119.2Mb (contig N50 of 25.7Mb), complete gene 

space (mean of 96% complete BUSCOs; (17)), and, based on the LTR Assembly Index (LAI, 

mean of 28; (18)), full assembly of the transposable-element-laden portions of the genome 

(Table 1; Table S2). 

 

Gene identification and diversity in gene content  
 

We sequenced mRNA from ten tissues in replicate for each inbred. These data were 

used as the basis for evidence-based gene annotation of each line, which was then improved 

using public B73 full-length cDNA and expressed sequence tags (ESTs). The evidence set was 

augmented with ab initio gene models and the gene structures uniformly refined for all 

accessions using phylogeny-based methods. This pipeline revealed an average of 40,621 (SE = 

117) protein-coding and 4,998 (SE = 100) non-coding gene models per genome, with well over 
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a million independent gene models generated across the 26 lines. Phylostrata analysis revealed 

that the great majority of genes share orthologs with species in the Andropogoneae tribe and 

grass family (Fig. 1A). The accuracy of the annotations, measured by the congruence between 

annotations and supporting evidence (Annotation Edit Distance, AED) (19), is substantially 

higher than previous reference maize and sorghum annotations (Fig. S1) (2, 6, 10, 20–22). 

Based on the canonical transcripts from this complete set of annotations, we assessed 

the gene catalog of the pan-genome. Genes with high sequence similarity, located within blocks 

of homologous sequence in pairwise comparisons, were grouped together as one pan-gene. In 

many cases, a gene was not annotated by our computational pipeline in a particular inbred line, 

yet at least 90% of the gene was present in the correct homologous location; when this 

occurred, the pan-gene was considered present (Fig. S2 A-B; see Methods), even though in 

some cases the absence of annotation may be associated with fractionation and/or 

pseudogenization. 

Across the 26 genomes, a total of 103,538 pan-genes were identified. Previous analysis 

of the maize pan-genome reported ~63,000 pan-genes based on transcriptome assemblies of 

seedling RNA-seq reads from 500 individuals (1). The superior contiguity of our assemblies, as 

well as the application of both ab initio and evidence-based annotation using RNA-seq from a 

diverse set of ten tissues, likely accounts for the increased sensitivity here. Over 80% of pan-

genes were identified within just ten inbred lines based on a bootstrap resampling of genomes; 

the rate of pan-gene increase as new genomes were added diminished beyond this point (Fig. 
1B). 

Pan-genes, excluding tandem duplicates, were classified as core (present in all 26 

lines), near-core (present in 24-25 lines), dispensable (present in 2-23 lines), and private 

(present in only one line) (Fig. 1C). For each genotype, the portion of genes classified into each 

of these groups was consistent, with an average of 58.39% (SE = 0.07%) belonging to the core 

genome, 8.22% (SE = 0.05%) to the near-core genome, 31.75% (SE = 0.09%) to the 

dispensable genome, and 1.64% (SE = 0.08%) private genes (Fig. 1C; Fig. S2 C-D; Table S3). 

In total, there are 32,052 genes in the core/near-core portion of the pan-genome and 71,486 

genes in the dispensable/private portion. The majority of core/near-core genes are syntenic to 

sorghum (57.8%) whereas this is rarely the case for dispensable/private genes (1.8% syntenic). 

Similarly, the core genes are generally from higher phylostrata levels (i.e. Viridiplanteae and 

Poaceae), while those in the near-core and dispensable sets either share orthologs only with 

closely related species or are maize-specific (Fig. S2 F). A total of 16,267 pan-genes had a 

putative tandem duplicate in at least one genome, of which 6,556 were found in a single 
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genome. On a per gene basis in genomes with at least one tandem duplicate the average copy 

number is 2.20 (SE = 0.01) (Fig. S2 E). 

 

Partial tetraploidy and tempo of fractionation  
 

The maize ancestor underwent a whole-genome duplication (WGD) allopolyploidy event 

5-20 MYA ((23, 24), Fig. 2A). Evidence for WGD is found in the existence of two separate 

genomes that are broken and rearranged, yet still show clear synteny to sorghum (23, 25). 

Many duplicated genes have since undergone loss, or fractionation, reducing maize to its 

current diploid state (25, 26). Further, fractionation is biased towards one homoeologous 

genome (M2, more fractionated) over the other (M1, less fractionated) (25). The M1 and M2 

subgenomes are composed almost exclusively of core (87.23%) and near-core (6.19%) pan-

genes (Figs. 1C, 2A). 

Given the ancient timeframe of the WGD in maize and the rapid tempo of fractionation 

observed in other species (27, 28), little variation in homoeolog retention is expected at the 

species level. In fact, prior work in temperate maize has suggested that most fractionation 

occurred long before maize was domesticated (6, 29). However, this diverse set of genomes 

allows for a more complete characterization of fractionation within the coalescence of the 

species. Since fractionation can occur at the level of small deletions (26, 30), we evaluated both 

partial and complete homoeolog loss beginning with a conservative set of 16,195 maize pan-

orthologs. We determined that 7,043 were single-copy orthologs, where the homoeologous 

gene was likely deleted prior to maize speciation (Fig. 2A). Fractionation bias was substantial in 

this set, with 70% of single-copy orthologs retained in M1 and 30% retained in M2. In addition, 

we identified 4,576 homoeologous pairs (Fig. 2A) of which 2,155 had the same exon structure 

of the sorghum ortholog in both homoeologs. In 1,281 pairs, at least one copy of the gene 

differed from its sorghum ortholog, but did not vary among NAM lines, likely representing 

fractionation that pre-dated Zea mays. These ancient deletions were also biased toward M2, but 

much less substantially (9.4% deletion excess in M2), potentially reflecting different exon 

structure in the paleopolyploid progenitors. Another 1,140 pairs varied across the genomes in 

their pattern of exon retention, segregating for deletions or structural differences in at least one 

copy of the gene. This segregating set was manually curated (Dataset S1) to remove loci where 

exons or flanking sequence could not be confidently identified (Fig. 2A), resulting in a curated 

set of 494 homoeolog pairs segregating for fractionation, which represents more than 10% of 

the homoeologous pairs present in the pan-genome. Of these, 281 M2 homoeologs had exon 
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loss compared to 236 M1 homoeologs, a 19% difference (p < 0.05, χ2 test), suggesting ongoing 

biased fractionation. 

Coalescent theory predicts that segregating mutations, like the fractionation deletions 

identified, should have arisen within the last 4𝑁! generations. If the effective population size in 

the maize progenitor teosinte is a reasonable upward bound for maize (𝑁! = 150,000; (31)), we 

can infer that the majority of segregating neutral variation arose within the last 600,000 

generations. Barring pervasive balancing selection for homoeologs, these data indicate that the 

majority of segregating fractionation substantially post-dates the last whole-genome duplication. 

Coalescent theory also predicts that rare deletions should be much younger than those 

segregating at intermediate frequency. We constructed the unfolded site frequency spectrum 

(SFS) of fractionation deletions in our curated set of homoeolog pairs and compared this to the 

unfolded SFS of non-coding SNPs using sorghum to define the ancestral state (Fig. 2B). The 

data reveal a similar frequency distribution in deletions and SNPs with a preponderance of rare 

variants in both, suggesting that a subset of fractionation may be quite young, potentially 

continuing in modern-day populations of maize. We also evaluated patterns of co-exon-retention 

in non-stiff-stalk temperate maize, tropical maize, and flint-derived maize, and observed clear 

evidence of population-specific fractionation (Fig. 2C). This surprising variation in homoeolog 

retention at the population level may reflect relaxed constraint following domestication and 

migration of maize to temperate climates. 

Analysis of gene ontology terms revealed that fully retained homoeologous loci were 

enriched (p < 1×10-05) for DNA-binding, nucleic acid binding, phosphatase regulation, and 

transcription factor activity (consistent with prior results; (32), whereas segregating fractionated 

loci were enriched (p < 1×10-05) for transporter and catalytic activity (Fig. S3, Dataset S1). 

These results support the hypothesis that fractionated loci have distinct functions from those 

that are retained, presumably due to differential selection on multi-protein pathways or 

metabolic networks (32, 33). 

 

The repetitive fraction of the pan-genome 
 

Transposable elements (TEs) were annotated in each assembly using both structural 

features and sequence homology (34). Individual TE libraries from each inbred were then 

combined to form a pan-genome library, which was used to identify TE sequences missed by 

individual libraries. The annotations reveal that DNA transposons and LTR retrotransposons 

comprise 8.5% and 74.4% of the genome, respectively (Table S4, Fig. S4). A total of 27,228 TE 
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families were included in the pan-genome TE library, of which 59.7% were present in all 26 

NAM founders and 2.5% were unique to one genome (Fig. S5). The average percentage of 

intact and fragmented TEs were 30.5% and 69.5% (SE = 0.06%), respectively. As reported 

previously, Gypsy LTR retrotransposon families are more abundant in pericentromeric regions, 

while Copia LTR retrotransposons are more abundant in the gene-dense chromosome arms 

(Fig. S6) (35). Tropical lines have significantly more Gypsy elements than temperate lines (p = 

0.002, t-test), with mean Gypsy content of 1,018 Mbp and 988 Mbp, respectively (Table S4, Fig. 
S4). This may reflect increasing constraint on Gypsy proliferation in temperate lines that have, 

on average, smaller genomes (Table 1). 

In some maize lines, over 15% of the genome is composed of tandem repeat arrays that 

include the centromere repeat CentC, the two knob repeats knob180 and TR-1, subtelomere, 

and telomere repeats (36, 37). Repeats of this type remain a major impediment to assembly. A 

mean of 60% of CentC, 70% of the 4-12-1 subtelomeric sequence (38)), 28.9% of TR-1, 1% of 

knob180, and 0.09% of rDNA repeat units were incorporated in the final assemblies (Table 1). 

A total of 110 (of 260) functional centromeres identified by CENH3 ChIP-seq (39, 40) 

were fully assembled, and of these 88 are gapless ((Fig. S7A and (40)). Chromosomes with 

very long CentC arrays (such as chromosomes 1, 6, and 7) often have assembly gaps and the 

precise location of the centromere could not be determined. However many centromeres either 

have fully assembled small CentC arrays or the functional centromeres are located to one side 

of the CentC tracts in regions dominated by retrotransposons (Fig. 3A). By projecting all 

centromere locations onto B73, we were able to identify twelve centromere movement events 

(three on chr5 and chr9, and two on chr3, chr8 and chr10), clarifying and extending prior 

evidence for centromere shifting (39) (Fig. 3B, Fig. S7B). The variation in CentC abundance 

and positional polymorphism made it possible to gaplessly assemble at least two variants of all 

ten centromeres (Fig. S7A). 

Both knob180 and TR-1 arrays are subject to meiotic drive and accumulate when a 

chromosome variant known as Abnormal chromosome 10 (Ab10) is present (37, 41). Although 

Ab10 is absent from modern inbreds, its legacy remains in the form of many large knobs. The 

majority of knob180 and TR-1 repeat arrays were identified in mid-arm positions (81.9%) where 

meiotic drive is most effective. Long knob180 and TR-1 repeat arrays can occur separately, but 

are more frequently intermingled in fragmented arrays along with transposons (Fig. 3A, Fig. S8) 

(42). Analysis of classical (cytologically visible) knobs on chromosome 1S, 2S, 2L, 3L, 4L, 5L, 

6L, 7L, 8L, and 9S revealed that their locations are syntenic and that several are composed of a 

series of disjointed smaller knobs (Fig. 3A, Fig. S9). In some lines, knobs are not visible 
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cytologically but can still be detected as smaller arrays at the sequence level; however, this is 

not always the case, as many show strict presence-absence variation among the NAM founder 

inbreds. 

Tandem repeat arrays are also commonly found at the ends of chromosome arms 

(Table S5). Among the 520 chromosome ends, 57.9% contained knob180 repeats and 30.5% 

contained subtelomere repeats. At least 65.6% of the ends were fully assembled as indicated by 

the presence of telomere sequences. 

 

Structural variation and impact on phenotype  
 

Comparative analyses among the NAM genotypes through mapping of long-reads to 

B73 revealed a cumulative total of 791,101 structural variants (SVs) greater than 100bp in size. 

Tropical lines, which are the most divergent NAM genomes from B73, include a substantially 

higher number of SVs than temperate lines (mean = 32,976 versus 29,742; p = 0.00013) 

(Tables S6, S7). Structural variants are more common on chromosome arms where 

recombination is highest (Fig. S10), similar to SNPs and other forms of genetic variation (43). 
Almost half (49.6%) of SVs were <5 kbp in size, with 25.7% being less than 500bp. Across all 

size classes SVs are skewed toward rare variants (Fig. S11). Several large SVs were found 

segregating within the 26 NAM genomes (Fig. 3B), including 35 distinct inversion 

polymorphisms and 5 insertion-deletion polymorphisms >1 Mbp. For example, a 14.6 Mbp 

inversion on chromosome 5 in the CML52 and CML322 lines, which was previously 

hypothesized based on suppressed recombination in the NAM RILs (11), is confirmed here 

based on assembly. Additionally, there is a 1.9 Mbp deletion with seven genes on chromosome 

2 in the MS71 inbred, and a 1.8 Mbp deletion with two genes on chromosome 8 found in eight 

lines. Our data also capture a very large reciprocal translocation (involving >47 Mbp of DNA) 

between the short arms of chromosomes 9 and 10 in Oh7B that had been previously detected in 

cytological studies (38) (Fig. 3B). 

The high proportion of rare SVs in maize suggests these may be a particularly 

deleterious class of variants, as observed in other species (44, 45). Indels and inversions occur 

in regions that have 49.8% fewer genic base pairs than the genomic background. Furthermore, 

SVs are 17% less likely to be found in conserved regions than SNPs (odds ratios of 0.27 and 

0.58 for SVs and SNPs, respectively, Fisher’s Exact Test, p < 0.001). Approximate Bayesian 

computation modeling revealed that selection against SVs is at least as strong as that against 
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nonsynonymous substitutions (Fig. S12; See Supplemental Methods). These results suggest 

that, when they occur, SVs are particularly consequential and are likely relevant to fitness. 

To estimate the phenotypic impact of SVs, we assessed the genetic basis of 36 complex 

traits (13) using 71,196 filtered SVs in 4,027 recombinant inbred lines derived from the NAM 

founder inbreds (11) (Fig. S13A). The analysis revealed that SVs explain a high percentage of 

phenotypic variance for disease traits (60.10% ~ 61.75%) and less for agronomic/morphological 

traits (20.04% ~ 61.04%) and metabolic traits (4.79% ~ 26.78%). Disease traits are often 

conferred by one or a few genes, whereas metabolic traits may be more sensitive to the 

environment and involve epistatic interactions that would not have been detected by our 

approach (46). Much of the phenotypic variation was also explained by SNPs, which were much 

more numerous (288-fold more) relative to our conservative set of SVs (Fig. S13A). When the 

SNP and SV data were integrated into one linear mixed model, the combined markers only 

slightly surpassed values from SNPs, consistent with the fact that most SVs are in high linkage 

disequilibrium with SNPs (Fig. S13A). We also carried out genome-wide association analyses 

(GWAS) to identify specific SVs contributing to phenotypic variation for the same suite of traits 

(Fig. S13B-G). Among the detected GWAS signals, 93.05% overlapped with those identified 

with SNPs and 6.95% were unique to SVs (no significant SNPs detected within 5 Mbp of 

significant SVs). The most significant association between a SV and a trait not identified using 

SNP markers was a QTL for northern leaf blight (NLB) on chromosome 10 (Fig. S13F). This SV 

is within a gene encoding a thylakoid lumenal protein; such proteins could be linked to plant 

immunity through the regulation of cell death during viral infection (47). 

Disease resistance in plants is frequently associated with SV in the form of tandem 

arrays of resistance genes. Complex arrays of resistance genes are retained, potentially 

through birth-death dynamics in an evolutionary arms race with pathogens, or through balancing 

selection for the maintenance of diverse plant defenses (48). Nucleotide-binding, leucine-rich-

repeat (NLR) proteins provide a common type of resistance. Our data reveal that there are 

fewer NLR genes in maize than other Poaceae (Fig. S14) and that most NAM lines have lost 

the same clades of NLRs as sorghum (Fig. S15). Only one line (CML277) retains the MIC1 NLR 

clade, which is particularly fast-evolving in Poaceae (49). Nevertheless, there is clear NLR 

variation among the NAM lines (Fig. S16), and tropical genomes contain a significantly higher 

number of NLR genes than temperate genomes (p=0.006), suggesting ongoing co-evolution 

with pathogens, particularly where disease pressure is high. 

The annotated NLR genes were significantly enriched relative to random samples of 

genes for overlap with SVs (boot-strap permutation test, p<0.001). An extreme example is found 
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at the rp1 (resistance to Puccinia sorghi1) locus on the short arm of chromosome 10, which is 

known to be highly variable (50). We observed exceptional diversity in the NAM lines with as 

few as 4 rp1 copies in P39, and as many as 30 in M37W (Table S8). However, due to its 

repetitive nature, only 18 NAM lines have gapless assemblies of the rp1 locus. 

SVs linked to transposons have been shown, through the modulation of gene 

expression, to underlie flowering-time adaptation in maize during tropical-to-temperate migration 

(51, 52). Our SV and TE-annotation pipelines identified the adaptive CACTA-like insertion 

previously reported upstream of the flowering-time locus ZmCCT10 (52). We also surveyed an 

additional 173 genes linked to flowering-time (53, 54) and discovered three genes (GL15, 

ZCN10, and Dof21) with TE-derived SVs <5 kbp upstream of their transcription start sites. 

These SVs distinguish temperate from tropical lines (t < -2.346, p < 0.0358) (Fig. S17) and 

show significant correlation (F > 8.658, p < 0.001) with expression levels. 

 

Discovery of candidate cis-regulatory elements through DNA methylation  
 

Based on sequence alone, it can be difficult to distinguish functional regulatory 

sequences from the multitude of non-functional and potentially deleterious genetic elements in 

the intergenic spaces. The problem is complicated by the fact that regulatory regions can be 

separated from their promoters by tens or hundreds of kilobases (5, 55). One way to identify 

functional regions is to score for unmethylated DNA, which provides both a tissue-independent 

indicator of gene regulatory elements and evidence that annotated genes are active (5, 55, 56). 

To incorporate DNA methylation to the NAM genomes resource, we sequenced enzymatic 

methyl-seq (EM-seq) libraries from each line and identified methylated bases in three sequence 

contexts, CG, CHG, and CHH (where H = A, T, or C). The results are consistent across genes 

and transposons, demonstrating the quality of the libraries (Figs. S18, S19). There is minor 

variation in total methylation across inbreds, with CML247 being noteworthy for uniformly lower 

CG methylation in several tissues (Fig. S20) pointing to the existence of a genetic variant that 

compromises mCG methylation in this line. 

Each of the three methylation contexts reveal information on the locations of repeats, 

genes and regulatory elements. mCHH levels are generally low in maize except in 

heterochromatin borders, whereas mCHG is abundant in repetitive regions and depleted from 

regulatory elements and exons (Fig. 4) (57). mCG is also depleted from regulatory elements but 

can be abundant in exons, especially of broadly expressed genes (58). Thus, to identify 

unmethylated regions (UMRs) corresponding to both regulatory elements and gene bodies, we 
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defined UMRs using a method that takes into account mCHG and mCG but does not exclude 

high mCG-only regions. Comparison of the 26 methylomes revealed uniformity in number and 

length of UMRs, averaging about 180 Mbp in total length in each genome (Figs. S21, S22). To 

confirm the accuracy of the UMR data, we also identified accessible chromatin regions (ACRs) 

using ATAC-seq for each inbred. We expect chromatin to be accessible mainly in the subset of 

genes expressed in the tissue sampled (primarily leaves) and to show a high level of 

concordance with UMRs. The data reveal that at least 98% of genic ACRs overlap with UMRs in 

each genome (Fig. S23, S24). For non-genic ACRs, the percent overlap was lower, but typically 

greater than 90%.  

To assess methylation diversity, we mapped UMRs from all inbreds to the B73 genome. 

The data reveal that ~95% of genic UMRs identified in one methylome overlap with a UMR in at 

least one other genome in pairwise comparisons (Fig. S25). UMR polymorphism is higher in the 

intergenic space, particularly among UMRs greater than 5 kbp from genes, where typically 

~75% of UMRs identified in one methylome overlap with a UMR identified in any other (Fig, 
S25). Even when the UMR sequence is conserved, its position relative to the closest gene may 

vary dramatically among inbreds. This is exemplified by the Miniature Seed1 gene where a 

UMR proximal to the promoter in Mo18W is displaced nearly 14 kbp upstream in B73 by a 

single Huck element (Gypsy LTR superfamily) (Fig. 4). The Huck insertion is present in 23 of 

the 26 genomes, and in two of these (Oh43 and CML322), additional nested TE insertions 

increased the distance between the gene and the UMR to 27 kbp. Although the overlap of 

UMRs in pairs of lines is generally consistent with genetic distance across NAM lines (Fig. S26), 

UMRs from the inbred Tzi8 were not substantially shared with other tropical genomes. Tzi8 also 

has longer ACRs (Fig. S24) despite grouping well with other tropical lines in terms of gene 

expression patterns.  

Variation in DNA methylation has been associated with adaptive traits in maize (59), 

most likely through effects on gene expression. To estimate how well UMRs predict 

transcriptional competency in these genomes, we identified a conservative subset of UMRs 

overlapping genes that were unmethylated in B73 but methylated in at least one other 

methylome. These differentially methylated regions were strongly correlated with gene 

expression in B73 and gene silencing in the other genomes (Fig. 4, Fig. S27). We further 

evaluated the enrichment of significant GWAS SNPs across 36 traits in UMRs. Based on 

genome-wide estimates, UMRs show 2.50- to 3.26-fold enrichment across traits for significant 

associations. Roughly 18% of SNPs identified by GWAS lie outside of genic regions but within 
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UMRs (Table S9), consistent with the view that UMRs can be used to identify regulatory regions 

with important roles in determining phenotype (5, 55, 56). 

 

Summary 
 

Our analysis of 26 genomes has uncovered previously unknown variation in both the 

genic and repetitive fractions of the pan-genome and provided new evidence of genome 

reorganization both before and after domestication. The available data will have broad utility for 

genetic and genomic studies and facilitate rapid associations to phenotyping information from 

the NAM lines. More generally, these new resources should motivate a shift away from the 

single reference mindset to a multi-reference view where any one of 26 inbreds, each with 

different experimental and agronomic advantages, can be deployed for the purposes of basic 

discovery and crop improvement. All data including annotations for genes, transposons, 

repeats, centromeres, UMRs, and ACRs are available with browser support at the maize 

community database, www.MaizeGDB.org.  
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MAIN PAPER FIGURES 
 
Table 1: Quality metrics for genome assemblies and gene model annotations. Darker shading 
indicates higher quality. 
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Figure 1. The gene space in the NAM genomes. A) Pan-genes categorized by annotation 
method and phylostrata. Genes annotated with evidence have mRNA support whereas ab initio 
genes are predicted based on DNA sequence alone. Genes within progressing phylostrata - 
species Zea mays (maize), tribe Andropogoneae, family Poaceae, kingdom Viridiplantae - are 
more conserved. B) The number of pan-genes added with each additional genome assembly. 
The error bars reflect different outcomes when the order of genomes was changed (the data 
were bootstrapped 1000 times). C) Frequency of pan-genes in the NAM genomes. The lower 
graph shows the number of genes present in only one genome (private), present in 2-23 
genomes (dispensable), present in 24 or 25 genomes (near-core), and present in all 26 
genomes (core). Grey shades indicate the proportion present in syntenic (M1 and M2 genomes) 
and non-syntenic positions. For B and C, tandem duplicates were considered as a single gene.  
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Figure 2. The tempo of fractionation in maize. A) Schematic showing how genes were 
categorized. 16,195 conservatively chosen orthologs were subdivided into classes representing 
retained pairs, ancient fractionation, and recent fractionation. B) Unfolded site frequency 
spectrum (SFS) of segregating exon loss and non-coding SNPs (genic and non-genic) using 
sorghum to define the ancestral state. C) Heatmap of the number of co-retained exons between 
any two NAM lines. Lines with mixed ancestry (M37W, Mo18W, Tx303) are excluded. Colors 
indicate the Z-score (the difference measured in standard deviations between a single pairwise 
comparison and all others in the row).  
  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.426684doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426684


 18 

 
 

 
Figure 3. Structural variation in the NAM founders. A) Pairwise alignments between Ki11, B73, 
Il14H on chromosome 8. Grey links represent syntenic aligned regions; gaps of unknown size 
(scaffold gaps) are marked by dashed lines. B) Large (>100 kbp) structural variants, 
centromeres, and knobs across the NAM lines versus the B73 reference. The subset of SVs 
larger than 1 Mbp were manually curated, and only those containing genes are represented. 
Features 1-5 highlight major SVs: 1) Multiple centromere movement events; 2) A major 
inversion hypothesized to suppress recombination; 3) A large deletion in the Ms71 inbred; 4) 
Knob polymorphism; 5) Reciprocal translocation between chromosome 9 and 10 in the Oh7B 
inbred (both segments placed in their standard positions for display). 
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Figure 4. UMR variation across the NAM founders. A) Annotation of the Miniature seed1 gene 
in the Mo17W inbred. An image from MaizeGDB browser shows gene, TE, and UMR tracks. TE 
tracks are color-coded by superfamily: green/grey = LTR, red = TIR, blue = LINE. The grey 
vertical lines show 2.5 kbp intervals. B) Annotation and underlying methylation data for 
Miniature seed1 in the B73 inbred. The insertion of a Gypsy element moved part of the proximal 
UMR to a position 14 kbp upstream from the transcription start site (TSS). Methylation tracks 
indicate base-pair level methylation values from 0 to 100%. Asterisks indicate gaps in coverage, 
which are visible in separate tracks not shown here. C) Relationship between methylation and 
gene expression. UMRs were mapped to B73 to identify UMRs that overlap with TSS. The Y 
axis indicates the ratio of transcripts per million (TPM, compared to B73) when the region is 
methylated (red) or unmethylated (teal).   
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SUPPLEMENTARY DATA 
 
Materials and Methods 
 
Data Availability 
 

Browsers: The NAM assemblies and gene models can be accessed through their 

genome assembly pages https://maizegdb.org/NAM_project, which provide the genome 

browser metadata and links to downloads for each assembly.  

Downloads: Downloads can be accessed directly from the MaizeGDB download site 

(https://maizegdb.org/download). NAM gene models can be downloaded, viewed on the 

genome browsers, and searched via the gene center (https://maizegdb.org/gene_center/gene). 

BLAST targets for the NAM assemblies and their gene models are available for the MaizeGDB 

BLAST tool (https://blast.maizegdb.org). 

Raw sequence data: Raw data used for all the assemblies including the PacBio Sequel 

reads, Illumina short reads, BioNano optical maps are available through ENA BioProject IDs 

PRJEB31061 and PRJEB32225. RNA-Seq reads for various tissues can be found through ENA 

ArrayExpress IDs E-MTAB-8633 and E-MTAB-8628 and EM-Seq reads are available through 

ENA ArrayExpress under ID E-MTAB-10028.  

Other data: Other files, tables and supplemental data can be found in CyVerse 

/iplant/home/shared/NAM/NAM_genome_and_annotation_Jan2021_release. Links to the NLR 

trees can be found at https://itol.embl.de/shared/xCJbI9ndshEK.  

Scripts: Scripts used to generate and analyze data are at 

https://github.com/HuffordLab/NAM-genomes.  
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Plant Material 

Inbred NAM lines were obtained from GRIN Global (Table S1) and tissue collected as 

previously reported (60). Briefly, original accessions were selfed for one generation at Curtiss 

Farm at Iowa State University. Using single-seed-descent ears derived from this propagation, 

144 seedlings were greenhouse grown to V2 vegetative growth stage at Iowa State University. 

After 48hr etiolation, 30 grams young leaf tissue was harvested, flash frozen, and submitted for 

CTAB, or nuclei-based high molecular weight DNA isolation for downstream analysis. 

Remaining seed from our single-seed-descent ears has been deposited and is publicly available 

through GRIN Global (Table S1). 

DNA preparation for sequencing 

 

High molecular weight DNA was isolated using either a standard CTAB protocol or a 

modified version in which nuclei were first isolated, thereby removing the plastid and 

mitochondrial genomes (Table S1). The CTAB procedure was a slightly modified version of the 

original method (61). Nuclei isolations were based on the method of Luo and Wing (62), with 

collected and washed nuclei then being resuspended in CTAB buffer and isolations completed 

following (61).   

 

PacBio Sequencing  

 

Sequencing libraries were constructed following PacBio’s template prep protocols for the 

Express Template Prep Kit 2.0. For all lines except Ki11, NC350, and B73, samples were 

sequenced using Sequel binding and sequencing chemistry v2.1. Ki11, NC350, and B73 were 

sequenced using Sequel binding and sequencing chemistry v3.0. 

 

Illumina Sequencing 

 

The same DNA used for PacBio sequencing was used for Illumina sequencing. PCR-

free DNA sequencing libraries were prepared using the Kapa HyperPrep PCR-free kit 

(#KK8505). The sequencing libraries were checked for quality on an Agilent Fragment Analyzer 

and the final concentrations estimated using qPCR. PE150 libraries were sequenced on the 

Illumina NextSeq 500 using the 300 cycles high output kit. 
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Optical Map Generation 

 

DNA was extracted for optical map construction using the Bionano Prep™ Plant Tissue 

DNA Isolation Kit and a slightly modified protocol. For each inbred, approximately 0.5 g of 

etiolated leaf tissue was harvested from young seedlings germinated under soil-free conditions 

and grown in the dark for approximately 2 weeks. Leaves were treated with a 2% formaldehyde 

fixing solution, washed, cut into small pieces, and homogenized with a Qiagen Tissueruptor 

probe. Free nuclei were then concentrated through centrifugation at 2000 x g, washed, isolated 

by gradient centrifugation, and embedded in a low-melting-point agarose plug. The plug was 

treated with proteinase K and RNase A and washed four times in Bionano Wash Buffer and five 

times in TE buffer. Finally, purified, ultra-high-molecular-weight nuclear DNA (uHMW nDNA) 

was recovered by melting the plug, digesting with agarase and subjecting the sample to drop 

dialysis against TE. 

Labeling was performed using the DLS Kit (Bionano Genomics Cat.80005) following 

manufacturer’s recommendations with slight modification. In total, 1 ug uHMW nDNA was 

incubated along with DLE-1 Enzyme, DL-Green and DLE-1 Buffer for 2:20 h at 37 °C, followed 

by 20 min at 70 °C. Subsequently, a second proteinase K digestion and cleanup of 

unincorporated DL-Green label was performed, and labeled DNA was combined with Flow 

Buffer, DTT, and incubated overnight at 4 °C. DNA was stained and quantified by adding 

Bionano DNA Stain to a final concentration of 1 microliter per 0.1 microgram of DNA. The 

labeled sample was then loaded onto a Bionano chip flow cell where molecules were separated, 

imaged, and digitized in the Saphyr System according to the manufacturer’s recommendations 

(https://bionanogenomics.com/support-page/saphyr-system/). Data visualization, processing, 

and DLS map assembly were conducted using the Bionano Genomics software Access, Solve 

and Tools. 

 

Genome Assembly and Hybrid Scaffolding 

 

Raw illumina reads were first used to verify homozygosity of inbreds by comparing 

percent heterozygosity of SNPs using BWA-MEM (63) and GATK (64) to publicly available 

HapMap2 maize SNP data (43). Loci that were monomorphic across lines were removed for this 

analysis. The data were also subsampled to 10,000 to 50,000 SNPs in order to generate a 

phylogenetic tree using SNPhylo (65) for the purpose of verifying line identity.  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.426684doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426684


 38 

PacBio subreads were error-corrected with Falcon (66) using the longest 50x coverage 

and an average read correction rate set to 75% (-e 0.75) with local alignments at a minimum of 

3000 bp (-l 3000). The usage of -l 3000 instead of the default -l 2500 performs better for highly 

repetitive genome species such as maize. We required a minimum of two reads and a 

maximum of 200 reads for error corrections (--min_cov 2 --max_n_read 200). For sequence 

assembly, the exact matching k-mers between two reads was set to 24 bp (-k 24) with a read 

correction rate of 95% (-e 0.95) and local alignments of at least 1000 bp (-l 1000). Corrected 

reads ranged from 32x-56x coverage and were characterized by N50s ranging from 16.2 – 23.2 

kbp. These reads were trimmed and assembled with Canu (v1.8) (67) with the following 

modification of default parameters: correctedErrorRate=0.065 corMhapSensitivity=normal 

ovlMerThreshold=500 utgOvlMerThreshold=150. This version of Canu fixes a bug in previous 

versions that generated truncations in large contigs during the consensus stage. The resulting 

contigs were filtered to a minimum contig length of 30 kbp. 

Sequence polishing of contigs was conducted using both PacBio and Illumina data sets. 

First, raw PacBio reads were aligned to contigs using the software pbmm2 (a PacBio wrapper 

for minimap2 (68)). The PacBio consensus algorithm tool Arrow was then run under default 

parameters (https://github.com/PacificBiosciences/pbbioconda). PacBio polished contigs were 

then polished with either PE 150 bp Illumina reads (the majority of samples) or 10X Chromium 

linked reads (CML52 and Il14H). The PE Illumina reads ranged from 26x-73x depth and were 

aligned to contigs using minimap2. Subsequently, the assembly tool Pilon v1.22 

(https://github.com/broadinstitute/pilon) was used to correct individual base errors and small 

indels under the following modifications to default parameters: --fix bases --minmq 30 --

mindepth 10. Chromium linked reads were aligned to contigs using Longranger v2.2.2 

(https://support.10xgenomics.com/genome-exome/software/downloads/latest?) with Pilon run as 

described above. 

The PacBio sequence assembly was merged with the optical map using the hybrid 

scaffolding module of BionanoSolve (v3.4.0) and Bionano Access (v1.3.0). Default parameters 

from optArguments_nonhaplotype_noES_DLE1_saphyr.xml were used. At this stage three 

forms of gaps were generated: 1) N gaps of various sizes (not 100Ns or 13Ns). These are rough 

estimates of missing sequence where the Bionano map was contiguous but there were no 

PacBio contigs that matched. Sizes are calibrated by the Bionano software and are generally 

accurate within 500 bp. 2) 100N gaps. These represent gaps of unknown size between 

scaffolds. They generally occur in centromeres and knobs. 3) 13N gaps. These are assembly 

artifacts associated with repetitive regions. They occur when two contigs are aligned to the 
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same optical map and they overlap on the ends, indicating that they are independently 

assembled parts of a single contiguous region (however due to the repetitiveness or residual 

heterozygosity, were not assembled together at the sequence level). Bionano software does not 

remove this overlap and instead joins the contigs end-to-end and marks the join by 13Ns. This 

creates a software-induced sequence duplication of several hundred bp to several kb. For the 

B73 assembly only (version 5.0) the contig overlaps marked by 13Ns were hand curated and 

removed. 

We emphasize that any segment of a genome containing a 13N gap, when aligned to 

any other genome, will show apparent structural variation that does not reflect a biological 

difference, but instead reflects an assembly artifact associated with contig overlap. These can 

be identified by scanning the sequence for 13N gaps. 

 

Pseudomolecule Construction 

 

Pseudomolecules were constructed from the hybrid scaffolds using ALLMAPS (v0.8.12; 

(69) as described in our previous assembly of the B73-Ab10 line (42). Briefly, we used pan-

genome anchor (4) and Golden Gate (11) markers for all NAM lines and the IBM (Intermated 

B73 x Mo17) genetic map (70) in the case of B73 for pseudomolecule construction. Pan-

genome anchor markers were downloaded from the CyVerse Data Commons (71) and 

processed to obtain coordinates 50 bp upstream and downstream of the marker position, and 

sequences from the B73 V3 assembly were then extracted. These sequences were mapped to 

an indexed NAM assembly using HiSat2 (v2.1.0) (72, 73) with fine-tuning to map short 

sequences reliably. By disabling splicing (--no-spliced-alignment), forcing global alignment (--

end-to-end), and including high read, reference gap open, and extension penalties (--rdg 

10000,10000 and --rfg 10000,10000), full-length mapping of marker sequence was achieved. 

Only reads with mapping quality higher than 30 and tag XM:0 (unique mapping) were retained 

as the final set of mapped marker sequences. These markers were then combined with the 

metadata to generate a pan-genome marker input file for ALLMAPS (predicted distance 

information with their mapped position) in CSV format. For preparing the IBM and the Golden 

Gate genetic maps, the marker information was downloaded from MaizeGDB (IBM: 

https://www.maizegdb.org/complete_map?id=887740; GoldenGate: 

https://www.maizegdb.org/data_center/map?id=1160762) and processed to yield markers in 

fasta format and metadata in a tsv file. Methods for mapping and processing these markers 

were identical to pan-genome anchor markers. 
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ALLMAPS was run using CSV files as inputs (pangenome.csv and goldengate.csv) and 

configured to use scaffolds with more than 20 uniquely mapped markers (--mincount=20). Gap 

inserts between the scaffolds was set to 100 (--gapsize-100). Pseudomolecules were finalized 

after inspecting the marker placement plot and the scaffold directions. Any small scaffolds 

nested within the large scaffolds were identified as heterozygous and were excluded from the 

final pseudomolecule. These scaffolds were named with the prefix “alt-scaf” and were saved as 

unplaced scaffolds. Synteny dotplots were generated using the scaffolds as well as 

pseudomolecule assemblies against the B73 genome by following the ISUgenomics 

Bioinformatics Workbook (https://bioinformaticsworkbook.org/dataWrangling/genome-

dotplots.html). Dot plots helped confirm the placement and orientation of scaffolds. Briefly, the 

repeats were masked using RepeatMasker (v4.0.9) (74) and the Maize TE Consortium (MTEC) 

curated library (https://github.com/oushujun/MTEC) (75). RepeatMasker was configured to use 

the NCBI engine (rmblastn) (76) with a quick search option (-q) and GFF as a preferred output. 

The repeat-masked genomes were then aligned using minimap2 (68) (v2.2) and set to break at 

5% divergence (-x asm5). The paf files were filtered to eliminate alignments less than 1 kbp and 

dotplots were generated using the R package dotPlotly (https://github.com/tpoorten/dotPlotly). 

The AGP construction method along with the scripts are detailed in the “agp-generation” section 

of the companion GitHub site. 

 

Genome Quality Assessment 

 

To assess the contiguity and gene space completeness of the NAM genome 

assemblies, different quality metrics (Table S2) were calculated using the GenomeQC tool (77). 

Embryophyta odb9 dataset (n = 1,440) and Augustus species ‘maize’ were provided as the 

input parameters to calculate the BUSCO metrics. 

The LTR Assembly Index (LAI) (18) was used to assess the contiguity of TE assembly. 

First, intact LTR retrotransposon (LTR-RT) candidates of each genome (pseudomolecules only) 

were identified using LTRharvest (v1.6.1) (78) and LTR_FINDER_parallel (v1.1) (79), then 

filtered by LTR_retriever (v2.9.0) (80) with default parameters. The LAI program (beta3.2) was 

used to calculate LAI values of each genome based on a total LTR content of 76.34%, an LTR 

identity of 94.854% (-totLTR 76.34 -iden 94.854), and the intact LTR-RTs identified from the 

genome. The LAI was comparable among NAM lines with an average of 28 (SD = 0.23), which 

is considered “gold” quality (18). The percentage of structurally annotated TEs was lower than 
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previously reported (21) due to more effective filtering of false positives (80) and the fact that 

only intact TEs were structurally annotated in this study. 

 

RNA-seq 

 

Total RNA was extracted using the Qiagen RNeasy plant mini kit from ten tissues. These 

were (1) primary root and (2) coleoptile at six days after planting, (3) base of the 10th leaf, (4) 

middle of the 10th leaf, (5) tip of the 10th leaf at the Vegetative 11 (V11) growth stage, (6) meiotic 

tassel and (7) immature ear at the V18 growth stage, (8) anthers at the Reproductive 1 (R1) 

growth stage, (9) endosperm and (10) embryo at 16 days after pollination. With a few 

exceptions, for each tissue in each NAM founder, mRNA was sequenced from two biological 

replicates that were composed of mRNA from three individual plants. In the case of endosperm 

and embryo, 50 kernels per plant were used (for a total of 150 per biological replicate). For 

tissues 1-5, plants were grown in University of Minnesota greenhouses in Metro-Mix300 (Sun 

Gro Horticulture) at 27°C/24°C day/night and 16h/8h light/dark. For tissues 6-10, plants were 

grown outdoors at the Minnesota Agricultural Experiment Station in Saint Paul, MN with 30-inch 

row spacing at ~52,000 plants per hectare.  

For each sample, total RNA was assayed by Bioanalyzer to determine the quantity and 

integrity of the sample. Concentrations were normalized in 25uL of nuclease-free water and 

sequencing libraries prepared using KAPA’s Stranded mRNA-seq kit (#KK4821). The mRNA 

was enriched using oligo-dT beads, fragmented, and converted to double stranded cDNA using 

random hexamer priming and amplification. Libraries were pooled and sequenced on NextSeq 

500 instruments using the PE75 protocol. 

 

Gene Model Annotation 

 

The 26 NAM genomes were annotated using a hybrid evidence and ab initio based gene 

prediction pipeline (81). Evidence-based predictions were directly inferred from the assembled 

transcripts, which were generated using five different genome-guided transcript assembly 

programs, Trinity (v2.6.6) (76, 82), StringTie (v1.3.4a) (83), Strawberry (v1.1.1) (84), Cufflinks 

(v2.2.1) (83, 85) and Class2 (83, 85, 86)) and processed using Mikado (v1.2.4) (87) to pick the 

optimal set of transcripts for each locus. To generate assembled transcripts, quality inspected 

RNA-seq reads from each library were mapped to their respective NAM genomes using STAR 

(v2.5.3a) (88) with an iterative 2-pass mapping approach in which splice junctions generated 
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from the first round were used to refine alignments in the subsequent round. STAR was 

configured to output SAM format (with options --outSAMattributes All, --outSAMmapqUnique 10, 

--outFilterMismatchNmax 0) to ensure downstream analysis compatibility. Mapped reads from 

each library were merged, sorted, and indexed using SAMTools (v1.9)(89) to generate input for 

transcript assembly programs. All programs were run with default options with the exception of 

the minimum transcript length setting (when allowed), which was set to 100 bp (Trinity using --

min_contig_length 100, StringTie using -m 100 and Strawberry using -t 100) and enabling of 

RNAseq strandedness (Trinity using -SS_lib_type FR, Cufflinks using --library-type fr-

firststrand), when available. Maximum intron size was also set to 10000 (--

genome_guided_max_intron 10000) in Trinity. While most of the assembly programs generated 

a GFF3 as the final output, Trinity provided fasta format transcripts. These transcripts were 

mapped back to the gmap (v2019-05-12) indexed genome to generate a GFF3 file (by setting 

the output format option -f to gff3_match_cdna).  

In order to pick the final transcripts, Mikado uses assembled transcripts combined with 

high-confidence splice junctions generated by Portcullis (v1.1.2) (90) with the mapped reads as 

input (merged and sorted), predicted ORFs for the assembled transcripts generated by 

TransDecoder (v5.5.0) (91), and homology results of transcripts to SwissProt (viridiplantae) 

sequences generated by NCBI-BLAST (blastx) (v2.9.0) (76). While default options were used 

for Portcullis and TransDecoder, for blastx, maximum target sequences were set to 5 (-

max_target_seqs 5) and output format to xml (-outfmt 5). The following were provided as inputs 

for Mikado: all transcript assemblies (with strandedness marked as True for all except for Trinity, 

and with equal weights) in GFF3 format, portcullis generated splice sites in bed format, 

TransDecoder results in bed format, homology results in XML format, and a scoring matrix in 

yaml. Final transcripts from Mikado were exported in GFF3 format, and transcripts and proteins 

were then converted to fasta format using the gffread utility of the Cufflinks package. 

Ab initio predictions were performed using BRAKER (v2.1.2) (92) with both evidence-

based predicted proteins and mapped RNA-seq reads as input. BRAKER was run iteratively, 

with the first round using the hard-masked genome (primarily to speed-up the protein 

alignments and to generate a hints file from the BAM file) and the second round using a soft-

masked genome with proteins/RNA-seq hints for finalizing the ab initio predictions. Default 

options were used in BRAKER, with the exception that gth was substituted as the protein aligner 

(--prg=gth), models trained using protein alignments (--gth2traingenes), the soft-masked 

genome was provided as input (--softmasking), and output predictions were generated in GFF3 

format (--gff3). 
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A working set (WS) of models was generated for each NAM line to capture the complete 

gene space by combining evidence based and non-overlapping BRAKER gene models using 

BEDtools (v2.17.0) (Aaron. A et al 2010). Additional structural improvements on the WS models 

were completed using the software PASA (v2.3.3) (93) iteratively with default options. 69,163 

B73 full-length cDNA (94) and an additional 46,311 transcripts from 11 developmental tissues 

(95) were filtered for intron retention and then used in combination with ~2 million maize ESTs 

from genbank with the Mikado generated transcripts as evidence to update WS gene models 

with PASA. PASA was run with default options, with a first step of aligning transcript evidence to 

the masked NAM genomes using GMAP (v.2018-07-04) (96) and Blat (v.36) (97). The full-

length cDNA and Iso-seq transcript IDs (98) were passed in a text file (-f FL.acc.list) during the 

PASA alignment step. Valid, near-perfect alignments with 95% identity were clustered based on 

genome mapping location and assembled into gene structures that included the maximal 

number of compatible transcript alignments. PASA assemblies were then compared with NAM-

generated transcript models using default parameters. PASA on average updated 12,927 

protein coding models across the NAM lines (Supplementary Table3) with the majority of 

updates being UTR modifications (73.8%), followed by alternative isoforms (35.1%) and novel 

genes (5.5%). Transposable element (TE) related genes were filtered from the evidence and 

non-overlapping BRAKER sets using the TEsorter tool (99), which uses the REXdb 

(viridiplantae_v3.0 + metazoa_v3) database of TEs. The TE filtered WS had 110,498 gene 

models on average across the NAM lines (lowest of 101,754 in B73 and highest of 118,596 in 

Tzi8). 

The TE filtered WS models were given Annotation Edit Distance (AED) scores using 

MAKER-P (v.3.0) (Campbell. M et al, 2014). Only models with AED < 0.75 passed to the high-

confidence set (HCS). The number of gene models dropped to an average of 45,768 transcripts 

per NAM accession in the HCS (lowest of 44,424 in B73 and highest of 47,262 in Mo18w) 

(Supplementary Table4). The HCS gene models were further classified based on homology to 

related species, and assigned coding and non-coding biotypes. Protein sequences were aligned 

to the canonical translations of gene models from Sorghum bicolor, Oryza sativa, Brachypodium 

distachyon, and Arabidopsis thaliana obtained from Gramene release 62 (100) using USEARCH 

v11.0.667_i86linux32 (101). The HCS gene models were checked for missing start and stop 

codons. On average 8,078 out of 32,470 conserved genes and 5,003 out of 8,862 lineage-

specific genes had incomplete CDS. The CDS boundaries of the transcripts were modified 

based on conserved start codon positions or extended to a start or stop codon whenever 

possible. All conserved genes in addition to lineage-specific genes that had a complete CDS 
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were marked as protein-coding. The remaining lineage-specific genes were marked as non-

coding. HCS gene models were checked and potentially split or merged using the GFF3toolkit 

(2.0.1) (102). Gene ID assignment was made as per MaizeGDB nomenclature schema 

(https://www.maizegdb.org/nomenclature) for each line. Functional domain identification was 

completed with InterProScan (v5.38-76.0) (103). TRaCE (104) was used to assign canonical 

transcripts based on domain coverage, protein length, and similarity to transcripts assembled by 

Stringtie. Finally, the gene annotations were imported to ensembl core databases, verified, and 

validated for translation using the ensembl API (105). The exported GFF3 annotation files were 

validated and reformatted again using GFF3toolkit. 

 

Centromere annotation 

 

Functional centromere regions were annotated using ChIP-seq with antisera to maize 

Centromeric Histone H3 (CENH3) as described (40). CENH3 ChIP-seq data from B97, 

CML228, CML322, CML247, CML52, CML69, Ky21, Mo18W, M37W, M162W, Ms71, NC358, 

Oh43, and Tx303 are from (39) and can be obtained from GenBank (SRP067358); and ChIP-

seq reads for B73, CML103, CML277, CML333, HP301, Il14H, Ki11, Ki3, NC350, Oh7B, P39 

and Tzi8 are from (40) and available under project PRJNA639705. 

 Centromere positions of each NAM line were projected to B73 by mapping both CENH3 

ChIP-seq data and genomic input data to the B73 genome with bwa-mem (v0.7.17) (63). ChIP 

enrichment was calculated by normalizing RPKM values from the ChIP data against the 

genomic input in 5 kbp windows with deeptools (v3.3) (106). Enriched islands with a ratio above 

2.5 were identified and merged with a distance interval of 1 Mbp using bedtools (v2.29) (107). 

The final centromere coordinates were determined by visual inspection of the ChIP-seq peaks in 

IGV (v2.8) (108). Centromeres that were not mappable by CENH3 ChIP were defined as the 

midpoint of the largest CentC array in B73. 

  

DNA methylation and identification of unmethylated regions (UMRs) 

 

DNA methylome sequencing libraries were prepared from the second leaves of 5 to 9 

plants (at a stage before the unfurling of the first leaves) using the NEBNext® Enzymatic 

Methyl-seq Kit (New England Biolabs #E7120S). At least two biological replicates were 

prepared and analyzed in this way for B73 each NAM founder. The input for each sample 

consisted of 200 ng of genomic DNA that had been combined with 1 pg of control pUC19 DNA 
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and 20 pg of control lambda DNA and sonicated to fragments averaging ~700 bp in length using 

a Diagenode Bioruptor. All libraries were amplified with 4 or 5 PCR cycles. The libraries were 

Illumina sequenced using paired-end 150 nt reads, with a minimum of 300 million reads per 

NAM founder, divided between biological replicates. Reads were trimmed of adapter sequence 

using cutadapt (version 2.6, default parameters except -q 20 -a AGATCGGAAGAGC -A 

AGATCGGAAGAGC -O) (109). Reads were aligned to each genome and methylation values 

called using BS-Seeker2 (version 2.1.5, default parameters except -m 1 --aligner=bowtie2 -X 

1000) (110). The previously separate replicates were merged together for subsequent analyses. 

Methylation averages were calculated for whole genomes and for specific sets of genetic 

elements using CGmapTools (111). UMRs were identified as described in (112). Briefly, 

reference genomes were segmented into 100-bp intervals. Intervals lacking at least four 

covered CHG-context cytosines (CHGs) were discarded. Coverage was calculated on a per-

cytosine basis and summed over each interval, and any interval with less than 20 reads 

covering CHGs was discarded. Intervals with methylation of greater than 20%, calculated using 

the weighted methylation formula (113), were also discarded. This was repeated on 20bp sliding 

increments, and all overlapping intervals or intervals separated by only 20 bp were merged to 

define larger UMRs. UMR edges were then trimmed such that their boundaries were defined by 

CHGs with less than or equal to 20% methylation. At this stage UMRs that overlapped with 

blacklisted regions (identified based on abnormally high coverage of the 150nt paired end 

Illumina reads that were used in each genome’s assembly) were discarded. This process was 

repeated using CG/CHG methylation combined rather than CHG methylation alone and both 

sets of UMRs were merged. Finally, UMRs that were shorter than 150 bp in length were 

discarded.  

A conservative approach was used to identify UMRs present within B73 that were either 

methylated or unmethylated in other NAM lines at homologous loci. B73 UMRs were divided 

into quarters of equal length. Based on EM-seq reads mapped to B73, a minimum CHG 

coverage of ten and a minimum covered CHG count of four was enforced in each UMR quarter. 

UMRs that satisfied these criteria were separated into those with >= 50% mCHG in all quarters 

(methylated) or < 20% mCHG in all quarters (unmethylated). UMRs in which all four quartiles 

were methylated were classified as high-confidence differentially methylated regions (DMRs), 

and UMRs in which all four quartiles were unmethylated were classified as high-confidence 

conserved UMRs. For each B73-NAM pair, the DMRs and conserved UMRs were compared to 

corresponding pan-gene expression levels averaged across the ten tissues and replicates. TPM 

was used for normalized pan-gene expression. Pan-genes that were absent from B73 were 
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excluded from this analysis. A subset of TSS-overlapping pan-genes were selected as those 

where a region from -10 to +400 bp of the TSS was at least 98% overlapped by a DMR or 

conserved UMR. The NAM founder TPM/B73 TPM ratio was calculated for each selected pan-

gene. This analysis was performed separately on each NAM founder-B73 pan-gene pair. 

 

UMR enrichment analyses 

 

A collapsed set of UMRs identified in all NAM lines using B73 as reference was 

generated using the bedtools (v2.27.1) (107) merge function. These UMRs were then 

intersected with significant SNPs (p-value ⩽0.05) from GWAS analyses using bedtools 

intersect. Enrichment of significant associations was calculated by shuffling UMR intervals using 

the bedtools shuffle function. To estimate genome-wide enrichment of significant associations in 

UMRs, shuffling was permitted in all regions except for sequencing gaps. To assess enrichment 

in low-copy, genic regions, shuffling was limited to pan-gene coordinates, plus 15-kb flanking 

regions (bedtools slop), allowing overlap with known UMRs. Summary statistics of intersecting 

SNPs were tabulated using bash scripts and GNU datamash (v1.3) (114). The interval size 

distribution, feature overlap and other metrics were computed using the GenomicRanges 

package (115).  

UMRs identified in B73 were also examined to assess intersection with coding features 

using the GFF files. With the bedtools intersect function, the number of significant SNPs (p-

value ⩽0.05) from the GWAS that are present in the B73 UMR region and also in the genic 

feature were computed and tabulated.  

 

ATAC-seq and identification of accessible chromatin regions (ACRs) 

 

Three biological replicates were included in each ATAC-seq sample, from two tissues 

sources. The first tissue source was V1 stage, above-ground tissue, excluding most of the 

exposed 1st and 2nd leaf blade but including coleoptile, sheath and ligule portions of 1st and 

2nd leaves, developing inner leaves, and shoot apical meristem. The second was the same 2nd 

leaf tissue used for EM-seq. Oh43 and Mo18w were exceptions in that they only included two 

biological replicates from the first tissue source and none from the second. Finely-ground, 

frozen tissue was suspended in 500 uL of LB01 buffer (15mM Tris pH 7.5, 2mM EDTA, 0.5mM 

Spermine, 80mM KCl, 20mM NaCl, 15mM 2-mercaptoethanol, 0.15% Triton X-100). The lysate 

was filtered through two layers of miracloth (Millipore #475855), stained with ~1 uM DAPI and 
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loaded onto a Beckman Coulter Moflo XDP flow cytometer instrument. A total of 20,000 nuclei 

were sorted from each replicate and NAM founder and combined into a single tube containing 

~350 uL of LB01. Sorted nuclei containing all NAM founders within a single tube were spun in a 

swinging bucket centrifuge (5 minutes, 500 rcf) and resuspended in 10 uL of LB01, visualized 

and counted on a hemocytometer under a fluorescent microscope, and adjusted to a final 

concentration of 3,200 nuclei per uL using diluted nuclei buffer (10X Genomics #1000176). 

For each replicate, a total of 16,000 nuclei were loaded per well on the Next GEM Chip 

H (10X Genomics #1000162), targeting a final recovery of ~10,000 single nuclei per library. 

Single-cell ATAC-seq libraries were prepared according to the manufacturer’s instructions (10X 

Genomics #1000176, Chromium Next GEM v1.1) using the Chromium Controller (10X 

Genomics #120223). Libraries were sequenced using 100-bp paired-end reads on an Illumina 

S2 flow cell (NovaSeq 6000) in dual-index mode with 8 and 16 cycles for i7 and i5, respectively. 

Replicated (3x) libraries were demultiplexed from single-cell ATAC-seq binary base call 

sequences files (BCL) output from the Illumina S2 NovaSeq 6000 with 10X Genomics 

cellranger-atac mkfastq software (v1.2) and aligned to the B73 RefGen_V4 reference genome 

(21) using cellranger-atac count (v1.2), resulting in three distinct sets of FASTQ files containing 

pooled NAM founders for each replicate. To assign genotypes to individual cells, a VCF file 

containing NAM founder SNP information mapped to RefGen_V4 (116) was used to partition 

reads by their respective genomes. Specifically, genotype probabilities for individual cells were 

estimated using demuxlet with non-default values (--min-total 100) (117). Cells with genotype 

probabilities less than 0.95 were removed from the analysis. Cell genotype classifications were 

taken as the genotype with the maximum probability. Finally, raw reads from cells 

corresponding to the same genotype were concatenated into forward and reverse FASTQ files.  

Demultiplexing, genotyping and FASTQ concatenation were repeated for each pool of 

biological replicates separately. Reads were then processed with fastp (version 0.20.0) (118), 

with the parameters --detect_adapter_for_pe --correction --length_required 35. Reads were 

aligned to the NAM reference genomes and to the B73v5 genome with Bowtie2 (version 2.3.5.1) 

(119), with parameters --local --very-sensitive-local --seed 1 -q --no-mixed --no-discordant --

maxins 1000. Aligned SAM files were converted to BAM files with SAMtools (version 1.10) (89), 

with the parameters view -b -h -S. Duplicate reads were removed with Sambamba (version 

0.7.1) (120), with the parameters markdup --remove-duplicates and reads were filtered for 

MAPQ scores of 30 or higher with sort -F "mapping_quality >= 30". ATAC-seq peaks were 

called with MACS2 (version 2.2.7.1) (121), with the parameters callpeak --format BAMPE --

gsize 1.8e+9 --keep-dup all --qvalue 0.005. 
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Pan-genome Analysis  

 

The pipeline described in (122) was used to identify homoeologous gene pairs using the 

canonical transcript for each gene 

(/iplant/home/shared/NAM/NAM_genome_and_annotation_Jan2021_release). This method 

requires that genes have high sequence similarity and fall within the same syntenic block. 

Syntenic blocks were identified by whole-genome alignment using MUMmer4 version 

4.0.0.beta2 (123) with --mum -c 1000 option. As a result, any genes unanchored to scaffolds 

would have been excluded. 

To compare gene content among genomes, we first created a blast database of all 

canonical gene model transcripts using the makeblastdb command in ncbi_blast+ version 2.8.1 

with default settings. An all-by-all blast was then performed between each pair of genomes. The 

results were parsed to retain hits between genes within a syntenic block that had a p-value of no 

more than 1×10-10. Gene pairs from the 26 genomes were added stepwise into a matrix using 

the custom R script stepwise_add_to_matrix.R and executed in R version 3.6.3 (124). Tandem 

duplicate genes as defined in (122) were compressed into semicolon-separated values in the 

matrix and counted as a single pan-gene for downstream analyses. Lines in the initial pan-

genome matrix that had redundant transcripts were compressed such that each transcript was 

contained in a single line. Additional tandem duplicates identified during this process were also 

merged and all tandem duplicates are presented as semicolon-separated values in the pan-

gene matrix. There remain cases where two biologically separate gene models are annotated 

as a single combined gene model, as well as genes that are incorrectly split (i.e. one biological 

transcript annotated as two separate transcripts) within the final annotation that can cause 

genes to be incorrectly identified as tandem duplicates in the pan-gene matrix.  

To recover pan-genes that exist in a genome but were not annotated, representative 

pan-gene sequences for all pan-genes were mapped to each NAM genome excluding scaffold 

sequences using GMAP version 2015-09-29 (96) with output one path option. Alignments were 

filtered to have greater than 90% coverage and 90% identity and to be in the same syntenic 

block to the pan-gene. GMAP canonical transcripts with CDS larger than 200 bp were 

intersected with annotation gff CDS files containing only the canonical transcript using 

intersectBed from bedtools v2.29.2 (107) with -f 0.90 -r option. GMAP coordinates that 

intersected with a canonical transcript at these thresholds were replaced by the canonical 
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transcript name. Pan-genes that overlap with a non-canonical annotated transcript are still 

represented as GMAP coordinates in the matrix. 

 

Transposable Element Annotation 

 

For each genome, both structurally intact and fragmented transposable elements were 

annotated using the Extensive de-novo TE Annotator (EDTA v1.9.0) (34). The curated and 

updated Maize TE Consortium (MTEC) library (https://github.com/oushujun/MTEC) was used 

as the base library, so that EDTA could identify novel TE families in each genome (--curatedlib 

maizeTE02052020). The high-confidence, evidence-based de-novo gene annotation of each 

genome was used to remove genic sequences in the TE annotation (--cds genome.cds.fasta). 

The species parameter was set to Maize (--species Maize) to use the maize-specific 

classification model for terminal-inverted repeat (TIR) elements in the TIR-Learner pipeline 

(125) that was included in the EDTA package. To further control false annotations, novel TE 

families that were single-copy in the source genome were identified using RepeatMasker 

(v4.0.9) (126) and further removed. The remaining novel TE families of all NAM founder 

genomes were aggregated following the removal of redundant sequences using the 

“cleanup_nested.pl” script in the EDTA package. The non-redundant, novel TE library was 

aggregated with the MTEC library to form the pan-NAM founder TE library, which was used to 

annotate all NAM founder genomes using RepeatMasker (v4.0.9) with parameters “-q -div 40 -

cutoff 225”. The homology-based annotations (by RepeatMasker) were combined with the 

structure-based annotation (by EDTA) and formed comprehensive TE annotations for each 

NAM founder genome. TEs found by structure-based annotations were classified into families 

using the pan-genome TE library based on the 80-80-80 rule, that is 80% of the TE sequence 

was covered by a library sequence with more than 80% identity and longer than 80 bp. 

Annotation statistics were summarized and plotted using custom Perl and R scripts. 
 

Characterization of tandem repeat arrays 

 

The coordinates of CentC, knob180, TR-1 and rDNA repeat arrays were determined by 

blasting consensus sequences to the assemblies as described previously (42). Arrays were 

defined as ≥100 kbp clusters composed of at least 10% repeat sequences with no more than 

100 kbp spacing between repeat units. The completeness of assembled repeat arrays was 

evaluated by comparing the amount of repeats incorporated in the pseudomolecules with that 
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estimated with 150bp Illumina reads from the same genomes. Assembled repeats in NAM 

genomes were identified with BLAST (v2.2.26) and quantified by counting non-overlapping 

repeat monomers. The absolute repeat abundance for each NAM line was estimated with 

Illumina reads. Paired-end short reads were subsampled to approximately 3X coverage and 

aligned as single-end sequences against consensus repeats with BLAST (v2.2.26; -b 5000 -F 

F). Non-overlapping fragments (≥ 30bp) mapped to repeat sequences in each read were 

summed as the total repeat abundance. The total repeats were then normalized by read 

coverage and genome sizes measured by flow cytometry (40, 43).  

Knob arrays were categorized as lying in a mid-arm position if they were farther than 2 

Mbp from either chromosome end. To identify conserved knob positions, the syntenic positions 

for each array were defined by the up and downstream sorghum orthologous gene from their 

respective genome. The knob arrays that correspond to classical knobs were identified by 

comparing relative coordinates based on karyotypes (127) to genomic coordinates of knob 

arrays in IGV. For the subset of knobs displayed for structural variation (Fig. 3), only arrays that 

were syntenic to knobs of at least 100 kbp in length in B73 were considered. 

Arrays of telomeric 7-mer repeat units (5'-TTTAGGG-3) were identified using the motif 

search algorithm of the Tandem Repeat Finder tool (version 4.09 with parameters 2 7 7 80 10 

50 500 -f -d -m -h) (128). To identify the boundaries of subtelomeric repeat arrays, fasta files of 

the maize subtelomeric sequences were first downloaded from the NCBI database with the 

following accession numbers: EU253568.1, S46927.1, S46926.1, S46925.1, CL569186.1, 

AF020266.1, AF020265.1. Subtelomeric sequences were blasted (BLAST v2.7.1+) against 

each chromosome of the pseudomolecule assembly for each NAM line; blast hits were then 

filtered for query coverage (≥80%) and percentage identify (≥80%). The coordinates of the 

filtered blast hits were clustered using bedtools (version 2.27.1) (107) to identify the start and 

stop coordinates of the repeat clusters. IGV was then used to manually check and refine the 

boundaries of telomeric and subtelomeric repeats located on the ends of the short and long arm 

of each chromosome for each of the NAM lines.  

 

Fractionation Analysis 

 

For fractionation analyses, the exons from the outgroup Sorghum bicolor 

(Sbicolor_313_v3.1 from Phytozome) were aligned to the previously described repeatmasked 

NAM and B73 genomes; annotated maize genes were not used. Tandem arrays for primary 

Sorghum CDS transcripts were filtered out with the script s.paralog_clusters.pl by selecting 
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gene model paralogs (i.e., sharing the same gene tree) that were clustered with four or fewer 

non-paralogous intervening genes as determined by the file tree_id.sorghum_bicolor.txt 

generated by Gramene. Exons from this filtered Sorghum CDS set were extracted using the 

Sorghum gff file and the Sorghum genomic fasta file using bedtools getfasta (107) and were 

aligned to the repeatmasked maize genomes using BLAST (76), -task dc-megablast, no max 

target sequences (see project GitHub for scripts and detailed parameters). Sorghum and all the 

NAM founders plus B73v5 were also filtered for tandem arrays using Tandem Repeat Finder 

(128), parameters 2 7 7 80 10 50 2000 -l 1 -d –h. The coordinates of these filters were applied 

to the blast outputs and all blast hits that fell within these coordinates in either Sorghum or 

maize were removed using bedtools intersect with the parameter –v to select only blast hits with 

no tandem repeat overlap. All sorghum genes with a tandem repeat homeolog in any NAM/B73 

were removed from consideration; this was found by running the same bedtools intersect 

command except with –wa –wb instead of –v for Sorghum hit coordinates that corresponded to 

any NAM/B73 tandem duplication. Only Sorghum genes that had clear and distinct homeolog 

associations were used; those that mapped to more than two syntenic regions were removed. 

DagChainer (129) was run using parameters optimized for the large size and complexity 

of maize and its large distance between genes and between syntenic orthologs: -s -I -D 

1000000 -g 40000 -A 15 (-A being much higher than the default value since exon collinearity 

was being determined, not whole-gene collinearity). Orthologs were scored in each NAM line 

based on alignment of at least one Sorghum exon to a single gene-space locus syntenic with 

the query Sorghum gene. Total Sorghum exon alignment counts per locus per maize genome 

post-DagChainer were deduced using bedtools groupBy (107). Fully retained orthologs were 

considered to be those that had all expected Sorghum exons aligned to the orthologous region 

in each maize genome. Partial deletions were those where fewer than the total number of exons 

of the Sorghum ortholog aligned. Cases where no Sorghum exons aligned at the expected 

orthologous region in each maize genome were scored as fully fractionated; an ortholog is 

considered not fully fractionated even if only one exon in one NAM line is present. Sorghum 

exon alignments were used instead of gene model alignments in order to capture partially 

deleted loci which may not be represented by a gene model annotation. 

DagChainer results were then filtered for Sorghum exon alignments falling within the 

identified subgenome blocks of B73 version 4 associated with syntenic coordinates of Sorghum 

gene models from the file B73v4.subgenome_reconstruction.gff3 from Gramene 

(/iplant/home/yjiao/B73_RefGen_V4/Annotation). Since maize underwent a genome duplication 

event after diverging from Sorghum, there would be two expected sorghum orthologs in each 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.426684doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426684


 52 

maize line; therefore, each Sorghum exon orthologous in maize would have been expected to 

have two syntenic copies unless fractionation had ensued. Only blast outputs in each NAM 

founder that share the same B73 subgenome chromosome as the sorghum orthologs were 

selected, such that if an exon is retained on both subgenomes, it would have two alignments to 

one Sorghum exon, differentiated in part by maize chromosome ID. Most inversions within the 

various maize lines were contained within subgenomic blocks, so they would not be excluded by 

this method. However, special consideration had to be made for Oh7B’s translocation of distal 

chromosome 10 to chromosome 9; all alignments that fell within that translocated region were 

given the identity associated with the subgenome identity of distal chromosome 10 for the 

purposes of fractionation assignment. The fractionation pipeline was tested multiple times for 

accuracy using CoGe’s GEvo visualization platform (130) and the pipeline was changed as 

needed to increase true positive alignments and reduce false fractionation calls, resulting in the 

finalized fractionation dataset (Supplemental Dataset 1). Segregating fractionation loci were 

manually checked in CoGe, and pipeline errors (i.e. false exon deletion calls) or missing exons 

associated with sequencing gaps as well as loci where flanking syntenic sequence could not be 

confirmed or exons were too fragmented to make a confident call were removed.  

GO enrichment of both homeologs for unfractionated and segregating fractionating pairs 

was generated in AgriGOv2 (131) (http://systemsbiology.cau.edu.cn/agriGOv2/) using the B73 

v4 Ensembl gene model dataset corresponding to the B73 NAM gene models (associations 

generated by CoGe SynFind, default parameters, using the B73 NAM gene model set as 

query), with parameters SEA, FDR 0.05, Bonferroni correction, and a minimum of 5 mapping 

entries. 

 

Structural Variant Detection 

 

 Structural variants (SV) were characterized using data generated from 1) long reads of 

each NAM mapped to B73, 2) chromosomal genome assemblies of each NAM aligned to B73, 

and 3) in silico digested assemblies (to simulate a Bionano optical map) of each NAM line 

aligned to the B73 map. 

For the long-read-based SV characterization, error corrected reads from each NAM line 

were mapped to B73 using NGMLR (v0.2.7) (132) with the “--presets” option set to “pacbio” and 

with “--bam-fix” enabled. The mapping step was trivially parallelized by splitting the input files 

(PacBio reads) and mapping them simultaneously to the reference genome, followed by 

merging the output bam files to a single bam file using samtools merge (v1.9). The merged BAM 
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file was then used with SNIFFLES (v1.0.11) (132) for calling structural variants in a two round 

process. The first round of SNIFFLES used stringent parameters (--max_num_splits 2, --

min_support 20, --min_zmw 2, --min_seq_size 5000, --max_distance 5000, --cluster, and --

cluster_support 2) with minimum SV size set to 100 (--min_length 100) and generated a VCF 

format output for each NAM line separately. The individual VCF files were then merged using 

SURVIVOR (v1.0.6) (133), with the max distance between breakpoints set to 1000, taking the 

SV type and strand into account, without using the estimating SV size option or taking the 

minimum size of SV into account. Since this merged SV set does not have genotype 

information, another round of SNIFFLES was run to force SV calls across all NAM lines. In the 

second round, the merged SVs were provided as input (--Ivcf) along with the BAM files (mapped 

reads). The final genotyped SVs were combined using SURVIVOR with the same options.  

Whole genome sequence alignments of each NAM against the B73 reference were 

generated using minimap2 (v2.17-r941) (68). The PAF-formatted alignments were generated 

using default options along with -c, (output cigar string), -x asm5 (use of ~0.1% sequence 

divergence preset) and --cs (encode bases at mismatches and INDELs) options. The generated 

paf file was sorted using the core utilities sort command, followed by paftools (k8 paftools.js call) 

(68) to characterize variants. The output format was then converted to a bed file in order to 

visualize SV in IGV (134) using a simple awk command. 

  For characterizing large SVs, each NAM genome was subjected to in silico digestion 

with the fa2cmap_multi_color.pl script from the BioNano solve program, using CTTAAG as the 

enzyme motif. This generates a simulated, assembled BioNano map in cmap format. The cmap 

files were aligned against the B73 cmap file using RefAligner tool from runCharacterize.py and 

runSV.py script of BioNano solve. Default options were used for both steps, with the arguments 

supplied through an XML file (optArguments_nonhaplotype_noES_DLE1_saphyr.xml). The 

resulting smap file (with the list of structural variants detected between query maps and 

reference maps in tsv format), was then converted to VCF format using the smap_to_vcf_v2.py 

script. The final SV file in VCF format was filtered to only include SVs greater than 1 Mbp using 

an awk command. Due to lack of resolution near the breakpoints, the SVs were subjected to 

manual inspection using the paftools alignment in IGV and synteny dot-plots, to refine the start 

and stop of the SVs called using this method. Calls of Bionano SVs across all NAM lines were 

made by selecting common boundaries across the lines. The most 5’ start position and the most 

3’ end position were used as the coordinates for the collapsed SV, and the genotypic calls for 

these overlapping SVs from the same individual were merged. The final curated SVs were 
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combined to generate a joint SV file using SURVIVOR, with similar options as explained before. 

The final SV set was generated by merging the SNIFFLES SVs with the curated BioNano SVs. 

 

Analysis of Flowering-time Genes 

 

As proof-of-concept that SVs affect important traits, we closely investigated 39 known 

flowering-time genes (53). We found the B73v5 coordinates for these 39 flowering-time genes 

and extracted the high confidence SVs of those gene coordinates (genic regions) plus 5 kb 

upstream (promoter regions) using bedtools (107). SVs for each genome relative to the B73v5 

genome were further filtered to include only insertions or deletions. These data were formatted 

for the IGV browser (134). For each promoter and genic region of a flowering-time gene across 

all genomes, unique insertion or deletion events were catalogued manually. These candidate 

SVs were investigated for association with changes in gene expression using t-tests between 

lines with and without a unique indel. 

Transcripts Per Million (TPM) was calculated for each candidate gene across six specific 

tissues: V11 leaf base, middle, and tip; V18 tassel; and R1 anthers and ears. The presence or 

absence of a candidate SV was used to predict the TPM of the candidate gene for a specific 

tissue (t-tests, accounting for (un)equal variances between groups). Out of a total of 62 unique 

indels and 372 tests while using the Benjamini-Hochberg procedure for multiple testing 

correction at alpha equal to 0.05 (135), we found 18 unique indels significant and 24 significant 

tests. Focus for intense study was on those significant indels that were present in at least 2 or 

more NAM lines and those genes which had multiple significant indels. 

Additionally, we inspected the previous 39 candidates as well as an additional 134 

known flowering time genes (Li et al 2016) for differences in gene expression between the 

temperate and tropical lines without tissue specificity, i.e. the TPM value was averaged across 

all tissues for a given line. Similar cut-off criteria were used as before. While no candidates 

surpassed the multiple testing cut-off, there were candidates with greater than +/- 2 log2 fold 

change between temperate and tropical lines. Candidates that met the log2 fold change cutoff 

were manually scanned for indels using the IGV browser as before (134). If an indel was found 

segregating between lines, an ANOVA determined if there were significant differences between 

indel haplotypes (Figure S17). Further confirmation was achieved using CoGe (130) to manually 

inspect these loci. TE annotations gave support to a TE origin for these candidate SVs. 

Using a permutation test, the Li et al 2016 candidates were significantly enriched with 

GWAS SNPs for Days to Silking, Anthesis Silking Interval, and Days to Anthesis (exact p-value 
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ranged from 0 - 0.028). Neither the Li et al 2016 candidates or the Dong et al 2012 candidates 

were more variable (i.e. had greater coefficient of variation in expression) as random subsets of 

genes (p-value 0.677-0.995). 

 

Glossy 15 analysis 

Two insertions were identified as candidates, 337 bp and 881 bp in size, associated with 

changes in gene expression changes (short insertion: t = -3.932, p = 6.354×10-04, long insertion: 

t = 3.151, p = 2.923×10-03). The shorter insertion passed a log2 fold change cut off of (+/-) 2 at 

2.06 while the longer one did not at -1.78. Those lines that contained only the shorter insertion 

had significantly higher expression in V11 middle (F = 24.51, p = 4.39×10-10) and tip of the leaf 

(F = 24.51, p = 4.24×10-10) tissue than any of the other haplotypes. Lines solely containing the 

shorter insertion were Oh43, Il14H, P39, M37W, and CML277. This insertion was confirmed 

with a local alignment in COGE where Oh43, Il14H, M37W, and CML277 all showed alignment 

with the P39 assembly while lines without the insertion were missing alignment. 

 

ZCN10 analysis 

ZCN10 had higher expression levels in tropical NAM lines compared to temperate NAM 

lines (est. difference = 8.49 TPM, t = -2.346, raw p = 0.0358, log2fc = 2.940). There is a single 

large insertion in CML247 and NC350, but this could not be verified by manual inspection with 

CoGe. The local alignment of CoGe did detect many deletions relative to NC350 in the 

upstream region of ZCN10 in temperate lines with the exception of B73, Il14H, and Oh7b. 

Deletions were detected in the tropical lines CML333, CML52, and Ki11. Those with these 

deletions appear to have less expression than those without, but it is difficult to parse if these 

deletions are correlated with TPM and if so, which deletions are the most strongly correlated. 

 

 

Dof21 analysis 

Dof21 had higher expression in tropical NAM lines compared to temperate (est. 

difference = 32.123 TPM, t = -2.542, raw p = 0.01898, log2fc = 1.540). P39, B73, and Il14H 

were temperate outliers with higher expression while CML52, NC350, NC358, and CML247 

were tropical outliers with lower expression. There were 2 insertions and 1 deletion with 

segregating haplotypes in the promoter window. Those lines with only one of the insertions had 

significantly lower expression than lines with both, neither, or the deletion (F = 8.658, p = 

0.000317). Lines with only one of the insertions included most of the temperate lines (except 
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P39) and the tropical outliers. These insertions were confirmed by manual inspection with 

CoGe.  

 

ZmCCT10 analysis 

ZmCCT10 had higher expression in tropical NAM lines than in temperate lines (est. 

difference = 0.2459, t = -1.844, raw p = 0.0895, log2fc = 2.063). CML247 was an outlier for high 

expression. There was an insertion and deletion segregating between the NAM lines, but there 

were no significant differences in TPM between the different haplotypes (F = 1.252, p = 0.307). 

These deletions likely correspond to the CACTA insertion found in B73 (52). Because of the 

cyclical expression pattern of ZmCCT10, it is likely our method of calculating TPM across tissue 

with a single time sample limits our ability to connect these deletions to flowering time. 

 

Analysis of Disease Resistance Genes 

 

The NLRs were extracted from the genomic DNA sequences using NLR-Annotator (136) 

and from proteomes using hmmalign with reference HMM of the grass NB-ARC (49). 

Additionally, NLRs and NLR-IDs were characterized in the Brachypodium (137) and maize 

annotations using the plant_rgenes pipeline (https://github.com/krasileva-group/plant_rgenes) 

(138) (e-value cutoff 1×10-03). The number of NB-ARC containing proteins was compared to 

those previously identified in Arabidopsis (139) and plotted using R package ggplot2 (140). The 

NB-ARC domain alignment was manually curated for the presence of NB-ARC domain 

functional motifs including Walker A, WALKER-B, RNBS-C, GLPL and RNBS-D. The NLR 

phylogeny was determined using RAxML MPI (v8.2.9,-f a, -x 12345, -p 12345, -# 100, -m 

PROTCATJTT) (141). The phylogeny was visualised and re-rooted on the longest internal 

branch in iTOL (142). 

 

Population Genetic Analysis 

 

GERP. Soft masked copies of 13 angiosperm genomes were aligned to the unmasked 

B73v5 reference genome using LAST (143–148). Repetitive elements in B73v5 were then 

masked in the aligned sequences. A tree with neutral evolutionary rates was estimated from 

four-fold degenerate sites in the alignment using rphast with default parameters (149). We then 

used the tools gerpcol and gerpelem from GERP++ (150) to estimate conservation scores at 
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aligned base pairs and identify conserved elements. For gerpcol we excluded the B73 genome 

from the alignment to avoid reference bias. 

Enrichment analysis. To test whether structural variants were depleted in conserved 

elements, we measured the overlap between structural variants and conserved GERP elements 

and performed Fisher’s exact tests. For tests involving combined deletions and insertions, we 

measured the overlap of base pairs in conserved elements with the presence of a structural 

variant in any of the NAM parental lines. We also tested for the depletion of deletions and 

insertions in conserved coding sequence, conserved noncoding sequence, and conserved non-

genic sequence. In all three of these cases, the Fisher’s exact test was testing depletion 

compared with non-conserved elements. For tests involving insertions, we measured the 

overlap of GERP elements with insertion start sites. As insertions may simply move conserved 

elements while maintaining their function, we speculated that insertion start sites may be more 

meaningful than base pairs of overlap with conserved elements. Insertions were also subdivided 

into quartiles based on size to test whether the size of insertions was associated with its 

depletion in GERP elements. 

To test the relationship between genomic features and the presence of SVs, we used 

quasi-Poisson regression in 10kb windows to explain the number of overlapping SVs based on 

overlap with GERP elements, accessible chromatin (5), recombination rate (151), and the 

number of masked base pairs in B73 (see supplemental Transposable Element Annotation). 

The model takes the following form: 

 

log(λi) =  β0 + β1*gerp element overlap + β2*recombination rate + β3*open chromatin + 

β4*masked base pairs 

 

Where λi is the number of occurrences of SVs within the ith window. As this is a quasi-Poisson 

model, the expected value of λi, λ, is equal to the expected number of SVs in a window, and θλ 

is equal to the variance of the number of SVs in a window, where θ is a dispersion parameter. 

Simulations. We used SLiM (152) to generate simulations of a 20-Mbp region consisting 

of two genomic element types that represented coding and non-coding sequence. The size and 

number of the element types were based on the approximate median values of B73v5 genome 

annotations described in the main text. The simulated 20-Mbp region consisted of 300 genes, 

each separated by 30 Kbp of non-coding bases. Each gene consisted of four 200 bp exons, and 

three 300 bp introns. Three types of mutations were simulated to represent neutral, 0-fold non-

synonymous, and structural variants. 4-fold and 0-fold mutation types were restricted to the 
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simulated exonic regions, where structural variants were allowed to occur anywhere along the 

20 Mbp segment. The total mutation rate in exonic regions was modeled as the sum of the rate 

for single nucleotide mutations (𝜇) and structural variants (𝜇"#). Each of the three types of 

exonic mutations occurred in proportion to the average number of 4-fold, 0-fold, and total 

number of exonic bases, which were 200 kbp, 57 kbp, and 240 kbp, respectively. The 

distribution of deleterious fitness effects for both non-neutral mutation types were modeled using 

a gamma distribution with parameters for the mean (𝑠$ and 𝑠"#) and shape (𝑠ℎ𝑎𝑝𝑒$ and 

𝑠ℎ𝑎𝑝𝑒"#), and a dominance coefficient of 0.5. 

We reduced the computation time by simulating 1000 individuals in the ancestral 

population. We maintained the population scaled mutation rate (𝜃 = 4𝑁!𝜇) estimated from 

median pairwise diversity (𝜋) in maize populations as ≈ 0.008 (153) by increasing the mutation 

rate from previous estimates of 3 × 10%& (154) to 2 × 10%'. Following recommendations in the 

SLiM manual (155), we rescaled recombination rate to match the change in mutation rate using 

𝑟"()*!+,(1/2) ∗ (1 − (1 − 2 ∗ 𝑟)-), where 𝑟 is the original recombination rate and 𝑛 is the 

rescaling factor determined by the ratio of the increased and original mutation rates. Previous 

estimates of median recombination in maize are 1.6 × 10%&(151); following the equation above, 

our simulations used a constant recombination rate of 1.05 × 10%'. 

In addition to modeling the distribution of fitness effects, our simulations incorporated a 

simple demographic scenario based on previous studies of maize domestication (156, 157). We 

assume a single panmictic ancestral population of constant size (𝑁)) that underwent an 

instantaneous bottleneck during domestication (𝑁.), which we assume occurred 𝐵/ = 0.067𝑁) 

generations ago based on archaeological and genetic data (156, 158). After the domestication 

bottleneck, we assume the population size grew exponentially to its present size 𝑁$, where the 

growth rate was derived from the change in population size as 𝑙𝑜𝑔(𝑁$/𝑁.)/𝐵/. 

Parameter Inference with ABC. We used Approximate Bayesian Computation (ABC) 

implemented in the R package abc (159) to jointly infer the distribution of fitness effects (DFE) 

and demographic parameters of our model. We used the folded site frequency spectra of variant 

sites from each mutation category generated from our simulations as input summary statistics to 

predict the joint posterior distribution of our model parameters. We normalized frequencies by 

their sum within each window and simulation. We accepted 0.5% of simulation draws with the 

smallest distance between simulated and observed mutation frequency bins. The posterior 

distribution was then inferred from the accepted draws using a neural network architecture with 

two hidden layers using the "neuralnet" method from the abc package in R. We conducted a 

total of 90,492 independent simulations by drawing parameters values from minimally 
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informative prior distributions reported in the table below. Our Snakemake (160) pipeline and 

SLiM code to reproduce the simulations are available here: https://github.com/HuffordLab/NAM-

genomes/tree/master/abc. 
ABC model parameters and prior distributions. U is short for Uniform. The prior distribution 

for 𝑠$ and 𝑠"𝑣 is a mixture, where 90% of draws are from a uniform and the remaining 10% were 

fixed with a selection coefficient of zero. 

Parameter Prior Description 

𝜇 2 × 10%' Neutral mutation rate per base pair. 

𝜇"# 𝑈(10%0$, 10%1) Structural variant mutation rate per base pair. 

𝑟 1.05 × 10%' Recombination rate (scaled to match mutation 
rate). 

𝑁) 1 × 102 Ancestral effective population size. 

𝑁. 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒	𝑈(0.01𝑁) , 𝑁)) Instantaneous bottleneck effective population 
size. 

𝑁$ 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒	𝑙𝑜𝑔	𝑈(𝑁) , 20𝑁)) Modern effective population size. 

𝐵/ 0.067𝑁) Bottleneck time (generations before present). 

𝑠$ 0.9	𝑈(−0.1,0) + 0.1	(𝑠 = 0) Mean selection coefficient of 0-fold non-
synonymous mutations for the 0-fold Gamma 

DFE. 

𝑠ℎ𝑎𝑝𝑒$ 𝑈(0,100) Shape parameter for 0-fold Gamma DFE. 

𝑠"# 0.9	𝑈(−0.1,0) + 0.1	(𝑠 = 0) Mean selection coefficient of structural variant 

mutations for the 0-fold Gamma DFE. 

𝑠ℎ𝑎𝑝𝑒"# 𝑈(0,100) Shape parameter for structural variant Gamma 

DFE. 

Model validation. We validated our approach by testing the accuracy of 100 randomly 

selected simulation runs. In each case, we held out the results of one simulation and predicted 

its parameters using the remaining simulated data. We evaluated the accuracy and reliability of 

the model across all 100 runs by calculating: 1. proportion of posterior draws greater than true 

value (prop_gt), 2. proportion times true values fell within the 95% credible interval (w.in_cred), 
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3. proportion of times the mean posterior values fell within the prior (w.in_prior), and 4. The 

natural log of the ratio of standard deviations of the prior and and posterior distributions 

(log(var_sc)). 

Analysis of empirical data. To fit our model to empirical data, we constructed 103 20-

Mbp windows along the B73v5 genome. We excluded the remainder of bases at the end of 

each chromosome, which varied from approximately 1 Mbp to 18 Mbp. We developed a script to 

categorize sites as 0-fold and 4-fold Using the B73v5 reference genome and gff annotation file 

(https://github.com/silastittes/cds_fold). We also developed a script to calculate the folded allele 

frequency spectrum of each of the three mutations types in each window 

(https://github.com/HuffordLab/NAM-genomes/blob/master/abc/predict/src/get_nam_sfs.py). We 

followed the same ABC approach that was used in our model validation methods above to infer 

the DFE and demography parameters from the empirical data, fitting each of the 103 windows 

independently. To summarize across 20-Mbp windows, we used the average value of each 

parameter from each of the 103 posteriors. 

To assess the degree of similarity between SFS data generated by the model and the 

empirical data, we ran simulations using 20 random draws from the posterior distributions of 

each genomic window. Before sampling, we excluded posterior draws that fell outside of 

parameter domains, and rounded demographic parameters to the nearest whole integer. From 

these 20 draws per window, we calculated the proportion of mutation counts in each frequency 

bin of the simulated SFS that were greater than observed counts, where 50% of the simulated 

draws should be greater than the observed under an adequate model of the data. 

Mean and standard deviation of average posterior predictions across the 103 genomic 
windows. Population size and mutation rate estimates are reported on the original scale, 100 

times that of the simulated values. 

parameter mean sd 

𝑁$ 2.58 × 103 1.87 × 103 

𝑁. 2.95 × 104 1.58 × 104 

𝜇"# 2.45 × 10%0$ 1.88 × 10%0$ 

𝑠$ 0.0197 0.0210 

𝑠"# 0.0274 0.0204 

𝑠ℎ𝑎𝑝𝑒$ 29.8557 24.870 

𝑠ℎ𝑎𝑝𝑒"# 50.148 7.965 
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Genome-wide Association Study and Variance Component Analysis 

We collected NAM phenotype datasets from eight publications (13, 161–167). Seven of 

the datasets are available at https://www.panzea.org/data. The phenotypic data include 36 

traits, covering agronomic, developmental, domestication-related, and metabolic characteristics. 

Traits had already been processed by fitting a model of best linear unbiased predictions 

(BLUPs) on the multi-environment trial for each trait within each study. A total of 4,027 NAM 

RILs were used for genome-wide association study and variance component analysis. 

Genotype projection from NAM parents onto RILs was carried out as follows: 

1. Parental SV and Marker Identification. Markers were identified in the parental 

genotypes using the PacBio and Illumina sequence data described above. During the merge 

step of the SNIFFLES SV calling pipeline some SVs with non-perfect overlapping boundaries 

were not merged. If the genotypic calls for overlapping SVs were the same across all of the 

parents that had genotypic calls, the genotypic information was subsequently collapsed. The 

boundaries were retained for the SV with the least amount of missing data or the largest one (if 

they had the same amount of missing data). If there was a disagreement between genotypic 

calls across all parents, both SVs were retained. 

2. Dataset for SV and SNP projections. All SNIFFLES SV markers were reduced to a 

binary state (SV is the reference state (A) or SV is the alternate state (T)) and converted to 

hapmap format for projection to the RIL progeny using the middle position of the SV as the 

variant point position. The identified SNPs were filtered on a per family (RIL population) basis 

and all families were combined after per-family projections were completed. The per family 

filters included 1) remove parental SNPs within the boundaries of deletions using vcftools 

v0.1.17 (168) and 2) remove monomorphic SNPs. 

3. GATK SNP calling for NAM founders. Short reads (PE150 libraries sequenced on the 

Illumina NextSeq 500 for polishing NAM genomes) were used for calling SNPs by mapping to 

the B73 genome as reference. The Genome Analysis Toolkit (GATK v4.1.3.0) HaplotypeCaller 

(64, 169), and best practices published by the Broad institute (170), were used along with 

numerous utilities in the Picard Toolkit (v2.23.3) for SNP discovery and final variant filtering 

(http://broadinstitute.github.io/picard/). For each read pair in fastq format, Picard was used to 

convert to SAM format through the FastqToSam utility. MarkIlluminaAdapters was run on SAM 
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files to mark the Illumina adapters and generate metrics files. The SAM formatted files were 

converted back to interleaved fastq files using the Picard SamToFastq utility and these were 

mapped to the BWA-MEM-indexed B73 genome using recommended options (-M) (171). The 

obtained SAM file was converted to BAM using samtools and aligned reads were merged with 

unaligned reads using Picard’s MergeBamAlignment utility, marking duplicates with the 

MarkDuplicates utility. In the last step of processing BAM files, AddOrReplaceReadGroups was 

used to add the correct read-group identifier before calling variants with HaplotypeCaller. 

HaplotypeCaller was trivially parallelized by running simultaneously on 1-Mbp intervals of the 

genome (2,813 chunks, including scaffolds), and the VCF files were gathered to generate a 

merged, coordinate-sorted, unfiltered set of variants (SNPs and INDELS). Stringent filtering was 

performed on the raw set of SNPs using the expression (QD < 2.0 || FS > 60.0 || MQ < 45.0 || 

MQRankSum < -12.5 || ReadPosRankSum < -8.0 || DP > 5916), where DP was estimated from 

the DP values of the SNPs (standard deviation times 5 + mean). This filtered set of SNPs was 

used as “known-sites” with Picard’s BaseRecalibrator and ApplyBQSR for recalibrating the 

processed BAM files from the previous round. The second round of GATK HaplotypeCaller was 

run using the same method as before and the variants were separated (SNPs and INDELS), 

quality filtered, and finalized for downstream analyses.  

4. GBS SNP calling for RILs using stacks. We followed methods, along with commands 

and parameters for GBS SNP calling using Stacks, from the online workbook 

(https://bioinformaticsworkbook.org/dataAnalysis/VariantCalling/gbs-data-snp-calling-using-

stacks.html). Briefly, metadata obtained from the CyVerse Data Commons and data 

downloaded from NCBI-SRA (BioProject ID: SRP009896) were processed using the Stacks 

(v2.53) (172) recommended pipeline. Barcodes were formatted and used with the 

“process_radtags” function to demultiplex the data. The demultiplexed reads were then aligned 

to the B73 genome using BWA-MEM under default parameters. Output SAM files were 

converted to BAM, sorted, and indexed after adding the correct Read-Group for each sample 

with the Picard Toolkit (v2.23.3). The Stacks program command “gstacks” was run using all bam 

files together, followed by the “populations” command (default options except --vcf, for VCF-

formatted output) to generate the final GBS SNPs file. Redundant positions were collapsed to a 

single line in this file. 

5. RIL Genotyping-by-Sequencing Anchor Markers. SNPs identified from GBS data were 

used to define haplotype blocks for projection of our dense SV and SNP parental markers to the 

4,950 NAM RILs. The GBS SNPs were filtered prior to conducting the projections. These filters 

and subsequent projections were applied on a per family (RIL population) basis and then all 
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families were combined after the per-family projections were complete. The per family filters 

included: 1) remove SNPs that were contained within a parental deletion of 100 kbp or less 

(95% of all deletions) using vcftools v0.1.17 (168), 2) remove monomorphic SNPs, and 3) 

remove SNPs with greater than 70% missing data. Finally, a sliding window approach was 

applied to correct for possible errors during genotyping as described by (173). For this, a 15-bp 

window, with 1-bp step size, and minimum of five markers per window was used. Only SNPs 

with allele frequency between 0.4 and 0.6 were retained. After these filtering steps, 

approximately 13,000-52,000 SNPs were retained per family and used to define haplotype 

blocks for the parental SV and SNP projections.  

6. Parental Marker Projection to RILs. The FILLIN plugin from TASSEL v 5.2.56 (174) 

was used to project SVs in a two-step process. First, haplotypes were created based on SNP 

and SV information in the parents using FILLINFindHaplotypesPlugin (-hapSize 3000 -minTaxa 

1). Then, the parental haplotypes were projected onto missing genotypes in the RILs with 

FILLINImputationPlugin (-hapSize 3000 -hybNN false). The projections were done for each 

NAM family independently. Projections of the polymorphic SNPs were completed using the 

same methods except the haplotype size was set to a larger size (-hapSize 70000). A sliding 

window was again applied to the projected genotypes to correct possible errors in the projection 

using a 45-bp window slide, 1bp step size, and a minimum of 15 markers per window. Finally, 

all monomorphic SNPs were filled back into each family and all SV and SNP markers across the 

families were combined into a single file. 

7. Additional marker filtering for GWAS. A genome-wide association study (GWAS) was 

performed by using the mixed linear model implemented in GCTA-MLMA (175). A total of 

71,196 SVs with missing rate < 20% were included to estimate the genomic relationship matrix 

used for SV-based GWAS and a total of 20,470,711 SNPs with missing rate < 20% were 

included in the SNP-based GWAS. While the first three principal components (PCs) were 

calculated to correct for the population structure, we excluded the fixed terms of PCs from the 

GWAS models for all the traits, due to the equal to or slightly lower genetic variances compared 

to those in the original models. 

The GCTA-GREML (Genome-wide Complex Trait Analysis-REstricted Maximum 

Likelihood) method (175) was used to estimate the ratio of genetic variance to phenotypic 

variance. Differing from trait heritability, this method is to estimate the variance explained by 

genome-wide markers. We estimated three ratios from this analysis: phenotypic variance 

explained by all the SVs (SV-based heritability), all the SNPs (SNP-based heritability), and both 

SVs and SNPs (Combined-genetic heritability). The last estimation uses a method to estimate 
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SVs-based and SNP-based heritability simultaneously in one model that was implemented with 

the function “mgrm”. 
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Supplementary Figures 
 
 

 
Figure S1. Cumulative Annotation Edit Distance (AED) scores in multiple recent genome 
assemblies. An AED score closer to zero indicates that more evidence supports the gene 
models. 83% of B73_V5 (blue) and NAM (black) gene models showed better AED values than 
other maize or sorghum reference annotations (2, 6, 10, 20–22). BTx623 is the sorghum 
reference genome. All others are maize assemblies. 
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Figure S2. Pan-genome analysis of the gene space. A) Number of absent pan-genes in each 
genotype before and after coordinate filling. B) Number of GMAP coordinate fills that 
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overlapped an annotated gene model at greater than 90% coverage. The coordinate fill was 
then replaced with the annotated gene model in the final pan-genome matrix. C) Proportion of 
the genes in each genome that are part of the core, near-core, dispensable, and private 
fractions of the pan-genome. D) Presence/absence (PAV) variation of each pan-gene in each 
genotype with pan-gene order sorted by core, near-core, dispensable, and private. In C and D, 
tandem duplicates were counted as a single pan-gene and coordinates were filled in when a 
gene was not annotated but an alignment with greater than 90% coverage and 90% identity was 
present within the correct homologous block. E) Distribution of mean copy number across 
genotypes that had ≥ 2 tandem copies for the 16,267 pan-genes that had a tandem duplicate in 
at least one genotype. Values over bars indicate the number in each copy number class. F) 
Proportion of annotated genes in each phylostrata level broken down by pan-gene frequency 
categories  (i.e. core, near-core, dispensable, and private genes). Full is the full set of annotated 
gene models, Evidence is the set of gene models that were generated based on RNAseq 
expression evidence from 10 unique tissues, and Ab initio are the augmented set of ab initio 
annotated gene models.  
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Figure S3: Bonferroni-corrected molecular function GO term enrichment (FDR 0.05) for loci in 
fully retained homeologs (top) vs loci in fractionating homeologs (bottom). Red shows strongest 
enrichment; yellow shows weaker (though still statistically significant) enrichment.   
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Figure S4. The cumulative length of repetitive sequences in NAM genomes. The right y-axis 
indicates the size relative to the B73v5 assembly (listed first). Genes and low-copy intergenic 
regions make up the rest of the assembly. 
 
 
 

 
 
Figure S5. Distribution of TE families in the 26 genomes. The X axis shows the number of 
genomes, where 1 indicates the number of TE families found in only one genome, 2 indicates 
the number of TE families found in two genomes, etc.  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.426684doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426684


 70 

 
 
Figure S6. Distribution of LTR retrotransposons on chromosome 1. Each genome is 
represented by one color. Densities are non-parametric probability densities of the target 
variable (e.g., the number of intact LTR-RTs). The area under a density line sums to 1. Total 
LTR (including Copia, Gypsy, and unknown LTR), Total Copia, and Total Gypsy percentages 
are the proportion of respective LTR sequences (including both intact LTR retrotransposons and 
associated fragmented sequences) of the total assembled sequence length calculated in 500-
kbp windows and 100-kbp steps. Intact/Total LTR percent is calculated with Intact LTR 
percentage (in 500-kbp windows and 100-kbp steps) divided by Total LTR percentage. The LTR 
makeup is very similar among lines at the Mbp scale. Crossover density (with B73) for each 
NAM line was calculated using data from (13). 
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Figure S7. Assembly and components of functional centromeres. A) Distribution of 
transposable elements and repeats in 260 active centromeres among NAM lines. Asterisks 
depict fully assembled centromeres. Gap only includes gaps of known sizes. B) Active 
centromere on chromosome 5 in B73. CentC and the five most abundant transposable element 
families are shown as tracks in the lower panel.   
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Figure S8. Assembly and components of repeats and transposons in the single largest knob 
array on each chromosome. A)  Distribution of transposable elements and repeats in the single 
largest knob array on each chromosome. Lengths are based on assemblies and only include 
gaps of known sizes. Asterisks depict fully assembled knobs. Unknown is unannotated. B) 
Largest knob on chromosome 5 in B73. Knob repeats and the three most abundant TE families 
are shown as tracks.  
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Figure S9. Synteny of classical knobs. Knob arrays corresponding to classical knob180 knobs 
(blue) and TR-1 knobs (red) are shown. Dot size corresponds to assembled array size. Syntenic 
arrays that are not cytologically visible are represented in black. The absence of a dot indicates 
there is no knob array present at the syntenic location. 
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Figure 
S10. Density of structural variation across the NAM genome assemblies relative to the B73 
genome. The scores represent the number of SVs per 2500kb. The minimum size of SVs in this 
analysis is 100bp or larger. Warmer color indicates higher density of SVs and cooler colors 
indicates lower density of SVs.  
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Figure S11. Distribution of structural variation across minor allele frequency (MAF) bins for 
various classes of size.  
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Figure S12. Distribution of mean selection coefficients (s) from 20-Mbp windows. 
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Figure S13. Genetic contributions from SVs and SNPs to complex traits in the population of 
NAM RILs. A) Phenotypic variance explained (PVE) by genome-wide SVs, SNPs, and 
combined. The 36 traits are organized into three groups: metabolic, agronomic/morphological, 
and disease-related traits. B-G) Manhattan plots of genome-wide association analyses (GWAS) 
of three traits with the highest PVEs by SVs. The GWAS with SVs (B, D, and F) detected 
significant QTLs, most of them overlapping with QTLs detected with SNPs (C, E, and G), but 
one on chromosome 10 for NLB was unique to SVs. The statistical significance thresholds on 
the Manhattan plots were obtained by controlling FDR on p-value 0.05. NLB and SLB are 
northern leaf blight and southern leaf blight, respectively. 
  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.426684doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426684


 82 

 
 

 
 
 
Figure S14. Violin plot of NLR variation in the pan-genomes of a eudicot (A. thaliana) and two 
monocot species (B. distachyon and Z. mays).  
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Figure S15. Maximum likelihood phylogeny of all NLR containing transcripts from NAM maize 
lines and S. bicolor. Dots indicate bootstrap values >80. The circle phylogeny shows all NAM 
NLRs. The linear phylogeny to the right is a zoom of the rose colored region illustrating the 
general trend that the NLR clades are broadly distributed across the maize NAM founder 
groups. 
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Figure S16. Maximum likelihood phylogeny of NLRs from NAM maize lines and S. bicolor. 
Single red dots on branches indicate bootstrap values >80. Ring one shows NLR-ID Pfam 
domains. Ring two shows the genes that have the corresponding Pfam domains. The colors 
represent the NAM founder groups (or Sorghum). Clades delimited by red dotted lines are 
segregating and not present in all NAM founders within a group.The MIC1 NLR clade 
(highlighted at top) is particularly fast-evolving in Poaceae (49). 
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Figure S17. Candidate flowering time gene expression (Transcripts Per Million, TPM) by indel 
haplotypes. Point colors represent the population (green = tropical, orange = sweet corn, pink = 
popcorn, blue = non-stiff stalk, yellow = stiff stalk, and grey = mixed). For A-C, each point 
represents the average TPM across tissues and replicates. A) ZCN10 expression in temperate 
and tropical groups (indel haplotype in the promoter region is unresolved). B) ZmCCT10 
expression in promoter haplotypes containing a deletion, an insertion, or neither indel. C) Dof21 
expression in promoter haplotypes containing two insertions and a deletion. D) GL15 expression 
in promoter haplotypes with insertions. GL15 showed significant expression differences in V11 
middle (left) and tip leaf tissue (right), which was not detected when all tissues were averaged 
together. Since GL15 is active for a short window of development in early vegetative stages, this 
fits with established knowledge of this gene. Expression is plotted based on the haplotypes 
created by presence/absence of a short and long insertion.  
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Figure S18. Spread of methylation levels for three representative genetic elements, genes 
(coding DNA only), Gypsy LTR retrotransposons, and TIR DNA transposons (Tc1/Mariner, hAT, 
Harbinger, and Mutator). Methylation is mC/total C for each sequence context. Horizontal lines 
indicate medians. To be included in this analysis, loci had to have a minimum of 10 cytosines in 
the specified context (CG, CHG, or CHH) that were covered by EM-seq reads. EM-seq reads 
from each methylome were mapped to their own genomes. 
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Figure S19: Whole-genome methylation levels for individual biological replicates. Methylation is 
mC/total C for each sequence context. EM-seq reads from each methylome were mapped to 
their own genomes. 
 
  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.426684doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426684


 88 

 
 
Figure S20. Additional comparisons of B73, CML247, and Oh43 methylation. A) Whole-genome 
methylation levels for individual biological replicates of primary root six days after planting and 
V18 growth stage meiotic tassel. Methylation is mC/total C for each sequence context. EM-seq 
reads from each methylome were mapped to their own genomes. B) Spread of methylation 
levels for representative genetic elements in developing second leaves. The same data are 
shown as in Fig. S18 but with the addition of five more genetic elements. Methylation is mC/total 
C for each sequence context. Horizontal lines indicate medians. All loci except CentC had to 
have a minimum of 10 cytosines in the specified context (CG, CHG, or CHH) that were covered 
by EM-seq reads. CentC was required to have 3 CGs or 5 CHGs. EM-seq reads from each 
methylome were mapped to their own genomes. 
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Figure S21. Total length and counts of UMRs. UMRs were defined relative to individual 
genomes by mapping each set of EM-seq reads to its own genome and defined relative to the 
B73 genome by mapping to B73. Position categories are as follows: UMRs with any overlap 
with genes are genic; of the remaining set, those with any overlap with the 5-KB flanks of genes 
are proximal; and the rest are distal. 
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Figure S22. Spread of UMR lengths. UMRs were defined relative to individual genomes by 
mapping each set of EM-seq reads to its own genome and defined relative to the B73 genome 
by mapping to B73. Position categories are as follows: UMRs with any overlap with genes are 
genic; of the remaining set, those with any overlap with the 5-KB flanks of genes are proximal; 
and the rest are distal. This analysis includes UMRs that are less than 150 bp in length (which 
were excluded from all other analyses). Y-axes are on a log10 scale. Boxplots denote medians 
and quartiles.  
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Figure S23. Overlaps of accessible chromatin regions (ACRs) by UMRs. Overlaps are >= 1 bp. 
UMRs and ACRs were defined relative to individual genomes by mapping each set of EM-seq 
and ATAC-seq reads to its own genome. Position categories are as follows: ACRs with any 
overlap with genes are genic; of the remaining set, those with any overlap with the 5-KB flanks 
of genes are proximal; and the rest are distal.  
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Figure S24. Lengths of Accessible Chromatin Regions (ACRs). A) Distributions of lengths of 
ACRs in each genome. Y-axes are on log10 scale. Position categories are as follows: 
ACRs/UMRs with any overlap with genes are genic; of the remaining set, those with any overlap 
with the 5-KB flanks of genes are proximal; and the rest are distal. Horizontal lines indicate 
medians. B) Cumulative length of ACRs in each genome. 
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Figure S25. Conserved low CHG methylation in UMRs. UMRs were defined by mapping  EM-
seq reads from seven inbreds indicated at right. For each of the seven, UMRs were then 
categorized into one of six methylation bins (percent mCHG relative to total CHG) based on 
mapping EM-seq reads from the other 25 inbreds. Dots represent the proportion of the UMRs in 
each category. The “<20“ category is what was used to define UMRs. The data are further 
categorized based on position relative to genes: UMRs with any overlap with genes are genic; 
of the remaining set, UMRs with any overlap with the 5-kbp flanks of genes are proximal; and 
the rest are distal. Boxplots denote medians and quartiles. For these analyses, all EM-seq reads 
were mapped to the B73 genome. 
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Figure S26. Heat map of the number of shared UMR regions across all pairwise comparisons of 
NAM lines. Boxed areas represent group by group comparisons. 
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Figure S27. Numbers of differentially methylated regions (DMRs) in each NAM founder 
methylome. B73 UMRs that had greater than or equal to 60% CHG methylation in another 
methylome were categorized as DMRs, while B73 UMRs with less than 20% methylation in 
another methylome were categorized as conserved UMRs. Methylation was measured using the 
EM-seq reads from each methylome mapped to the B73 genome and was defined as percent 
mCHG relative to total CHG. A subset of TSS-overlapping pan-genes were selected as those 
where a region from -10 to +400 bp of the transcription start site was at least 98% overlapped 
by a DMR or conserved UMR. 
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Supplementary Tables 
 

 
 
Table S1: Accession and DNA isolation information for NAM lines 
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Table S2: Quality metrics for the NAM genome assemblies. 
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Table S3: Categorization of pan-genes for the NAM genomes. Numbers in parentheses are 
identified based on coordinate filling. 
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Table S4: Percentage of repetitive sequences in NAM parent genomes. 
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Table S5: Characterization of assembly content of chromosome ends. Numbers are shown in 
bp. 
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Table S6: Extent of structural variation relative to B73 across the NAM assemblies including 
deletions (DEL), insertions (INS), inversions (INV), duplications (DUP), and translocations 
(TRA). 
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Table S7: Extent of structural variation across the major groups of NAM lines relative to B73. 
Mean/Median total sizes are shown in Mbp and mean/median sizes are shown in bp. 
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Table S8: Coordinates and copy number of the rp1 tandem array on chromosome 10S. 
Coordinates are referenced to each of the individual genome assemblies. 
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Table S9: Number of significant GWAS SNPs (p ≤ 0.05 after FDR correction) for each trait 
within and outside of UMR intervals. 
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Supplementary Dataset 
 
Dataset S1. Spreadsheet with data used for fractionation analysis. Data show the exon count 
matrix, genomic coordinates of regions syntenic with sorghum, and loci used for the GO 
analysis. 
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