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Genome mapping permits the study of morphological, physiological, and 
developmental processes in which genetic variants exist, and requires minimal 
a priori  information. Further exploitation of the polymerase chain reaction, 
yeast artificial chromosomes, and comparative analysis of distantly related 
taxa, will contribute greatly to the fundamental understanding of plant biology 

and crop production. 
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Introduction Genetic mapping 

Genome mapping, a synthesis of concepts from clas- 
sical genetics using tools from molecular biology and 
methods from biometry, is a powerful approach for the 
study of plant biology. Genome mapping is rooted in 
classical genetic linkage analysis, but recent techno- 
logical advances facilitate the mapping of genes res- 
ponsible for either simple or complex phenotypes. 
Plants are well suited to genetic mapping because 
of their short generation times, the ease with which 
large populations can be grown, and their amenabil- 
ity to artificial crosses. Extensive collections of variants 
in plant morphology, physiology, and development are 
available that provide fertile sources of genes for study. 

Map-based cloning (that is, the cloning of genes un- 
derlying discernible phenotypes  based upon map pos- 
ition) facilitates the isolation of genes affecting pro- 
cesses of  developmental  and/or  economic importance, 
with minimal a priori information. Map-based cloning 
in higher plants is complicated by physically large 
genomes, prominent repetitive DNA fractions, and 
polyploidy. Consequently, many developmentally im- 
portant genes are being cloned in plants such as Ara- 
bidopsis, by insertional mutagenesis [1] or subtractive 
hybridization [2]. Crop plants, however, are cultivated 
for attributes that are not  found in model systems, such 
as the cotton fiber, maize 'ear', or tomato 'fruit' (berry). 
The cloning of genes associated with such attributes, 
which are the basis of  agricultural productivity, will re- 
quire the development  of  high-density restriction frag- 
ment length polymorphism (RFLP) maps and yeast arti- 
tic.iN chromosome (YAC) libraries for major crops and 
their close relatives. 

Plant genetic maps 
Detailed genetic maps, based largely upon  RFLPs, have 
been  constructed for many plants [3]. The most out- 
standing among these are the maps of tomato (1400 
markers distributed over 12 chromosomes) [4"o], and 
Arabidopsis (500 markers distributed over five chro- 
mosomes) [5-7]. Recent additions to the growing list 
of plant genetic maps include conifer [8], loblolly pine 
[9], barley [10], peanut [11], Brassica rapa [12], rye 
[13], wheat [14], Cuphea [15], sugarcane (B Sobral, 
personal communication) and cotton (AH Paterson, 
unpublished data). 

The integrity of a genetic map can be assessed sta- 
tistically [16], but biological tests have been reported 
recently. Mapping of length polymorphisms in sub- 
telomeric tandem arrays of a 162 base pair element 
showed that the genetic maps of four tomato chromo- 
somes are within 5-10 cM of the physical chromosome 
ends [17]. This is in contrast to recent results from in 
situ hybridization of mapped low copy number clones 
to rice chromosomes, suggesting that the genetic map 
falls short of the physical chromosome ends [18]. This 
conflict has yet to be clearly resolved. 

Most primary genetic maps of plants have been made 
in pedigrees chosen for their high DNA marker allele 
diversity. While many of these crosses harbor agri- 
culturally useful genes, they are unlikely to produce 
genotypes suited to the needs of the producer, or to 
the tastes of the consumer. The advantage of using 
wide crosses for genetic mapping is a consequence 
of the fact that the elite gene pools of many impor- 
tam crops are genetically narrow [19]. This indicates 
that there is an immediate, practical need for DNA 
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markers that facilitate the genetic analysis of closely 
related individuals. Solutions to the problem of mini- 
mal genetic variation are available, using hypervariable 
DNA markers associated with arrays of short tandemly 
repeated sequences [20]. Recent developments have 
streamlined identification of such markers, and maps 
of the human [21"], mouse [22"], and rat [23] genomes 
now include polymerase chain reaction (PCR) based 
sequence-tagged microsatellites (STMs). The construc- 
tion of genomic DNA libraries enriched for STMs was 
described recently [24]. These allele-rich markers serve 
the needs of both genetic and physical mapping, and 
are present in many plants [25]. 

PCR-based genotyping promises to streamline genetic 
mapping [26]. A limitation of PCR-based genotyping is 
that the development of STMs requires a large invest- 
ment in sequencing. Randomly amplified polymorphic 
DNA (RAPD) PCR [27] and arbitrary primer PCR [28] 
minimize this cost by using primers of quasi-arbitrary 
sequence  for DNA amplification. One genetic linkage 
map based largely on RAPDs has been published [7], 
and another based upon arbitrary primer PCR is under- 
way (B Sobral, personal communication). Dominant 
inheritance of most RAPD markers sacrifices much in- 
formation in F2 populations [29]. Further, the reliability 
of many RAPD markers may not be sufficient for the 
stringent requirements of linkage mapping, although 
arbitrary primer PCR markers appear to be more re- 
liable. While the limitations of RAPDs are partially 
alleviated in homozygous [7] or hemizygous [30] pop- 
ulations, we believe that RAPDs will only find limited 
use in the construction of primary genetic maps. How- 
ever, we emphasize that PCR using arbitrary primers is 
valuable for enriching predefined genomic regions for 
DNA markers. 

Comparative mapping of plants 
Many DNA sequences that encode proteins are con- 
served across a wide range of organisms, while non- 
coding sequences are more freely divergent. Ge- 
netic mapping of conserved DNA sequences (such as 
cDNAs) permits the investigation of the order of genes 
along chromosomes in distantly related taxa. Through 
comparative mapping, parallelism in gene order (syn- 
teny) along the chromosomes, as well as breakpoints 
responsible for differences in gene order, have been  
demonstrated for tomato and potato [4"',31,32], and 
sorghum and maize [33]. Comparative mapping sug- 
gests that remarkably few macroevolutionary events 
may distinguish plant species. Comparative maps have 
practical applications too: by extrapolating map infor- 
mation from one taxon to another, efficient high-den- 
sity mapping of related taxa can be done simultaneo- 
usly [3,31,32]. 

Like cDNAs, some sequence tagged sites are conserved 
across taxa, permitting PCR to contribute to compar- 
ative mapping [34"q. Successful PCR amplification of 
30 million year old specimens [35"q adds another di- 
mension to comparative mapping - a vertical picture 
through time, as well as a horizontal picture across ex- 
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tant taxa. Comparative mapping may help to unravel 
the genetic complexities of  polyploids. Wheat, soy- 
bean, cotton, and other important crops are polyploid, 
harboring two or more genomes that are distantly re- 
lated but do not normally pair during meiosis. In the 
cotton RFLP map (AH Paterson, unpublished data), 
about 10% of RFLP markers reveal polymorphism at 
corresponding loci on each of the two genomes. These 
markers provide a framework for establishing relation- 
ships between the two genomes. As these relation- 
ships become clear, each DNA probe mapped to one 
genome will also, in effect, be mapped to the other. 
The development of high-density maps for cotton and 
other polyploids will be accelerated by delineating re- 
lationships between homeologous chromosomes. 

Phenotype mapping and gene tagging 
Phenotype mapping is the primary justification for con- 
structing genetic maps in plants. Closely linked DNA 
markers facilitate the indirect selection of traits that are 
difficult to measure, and provide a starting point for 
map-based cloning of genes of developmental and/or  
economic importance. DNA markers linked closely to 
simply inherited traits can be isolated efficiently using 
RAPD PCR on near-isogenic lines [36-]. Recently, this 
powerful technique has been  extended to the enrich- 
ment of any genomic region for DNA markers, using 
synthetic DNA pools [37",38"]. New markers have been 
isolated that are linked to the tomato developmental 
mutations jointless and never-ripe [38.], and lettuce 
downy mildew resistance loci [37"]. 

The DNA pooling approach raises the possibility of 
isolating markers for quantitative trait loci (QTLs) [37°]. 
This is especially appealing, as QTL mapping requires 
large populations to discern small phenotypic effects 
of numerous unlinked loci. Both theoretical expecta- 
tions and post hoc analysis of previous QTL mapping 
results, suggest that only QTLs with unusually large ef- 
fects can be detected using DNA pools (G Wang and 
AH Paterson, unpublished data). However, once QTLs 
have been mapped by current methods [39,40",41], syn- 
thetic DNA pools are an excellent means of enriching 
the genomic region of a QTL for DNA markers. Such 
markers might be valuable for high-resolution mapping 
of the QTL [42] or introgression of the QTL into differ- 
ent genotypes. 

Physical mapping and map-based cloning 

Pulsed-field electrophoresis [43] and YAC DNA vec- 
tors [44] permit large regions of plant genomes to be 
dissected and cloned. These tools allow genes to be 
isolated based solely on their genetic map position. 

Megabase DNA preparation 
A reliable method for the isolation of relatively intact, 
unsheared plant DNA is a prerequisite for pulsed-field 
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electrophoresis and YAC cloning. Megabase DNA isola- 
tion procedures are available for many  plants, the most 
recent additions being soybean [45], rice [46], wheat, 
barley and rye [47]. The recurring method is to embed  
plant protoplasts in agarose plugs, followed by  lysis, 
proteinase digestion, and washing. Recently, We devel- 
oped a procedure, adapted from [48], for embedding 
plant protoplasts in agarose microbeads, which offers 
significant advantages over plugs (RA Wing, S-S Woo, 
VK Rastogi, H-B Zhang, AH Paterson, SD Tanksley, un- 
published data). 

RFLP maps, cosmids and YACs, provide a 'local' view 
of  the genome. An overlapping cosmid map compris- 
ing 90-95% of the Arabidopsis genome has been  con- 
structed [57]. Recently Hwang et al. [58] described pre- 
liminary data to assemble a set of  overlapping YACs 
for the entire Arabidopsis genome. The authors iso- 
lated 125 YACs using RFLPs across the five linkage 
groups. These YACs represent 30% of the Arabidop- 
sis genome. Ultimately, the authors plan to assemble a 
blot comprising the minimum number  of YACs to over- 
lap the entire genome, to aid in genetic mapping and 
chromosome walking. 

Genetic versus physical distance 
Once molecular markers have been  shown to be ge- 
netically linked to a target gene, it is prudent  to es- 
tablish the relationship be tween genetic and physical 
distance in the region surrounding the gene. This in- 
formation will help to determine a chromosome walk 
or jump. The average relationship between the genetic 
and physical distance of a genome is readily calculated 
from the genome size and length of the genetic map. 
However, actual values for any specific location vary 
widely from the average. In the tomato, i cM aver- 
ages 900 kb, but  in the Tm2a region of chromosome 9, 
I cM is 4-16Mb [49]. This physical distance is currently 
well beyond the capabilities of map-based cloning. In 
wheat, where the kb : cM ratio is much larger than in 
tomato, I cM is approximately equal to 1 Mb in the re- 
gion of the 0c-amylase gene on chromosome 6 [47]. 

Yeast artificial chromosome libraries 
Since the demonstration that large human DNA frag- 
ments can be maintained in YACs [44] many  groups 
have set out to make plant YAC libraries. YAC libraries 
have been constructed for Arabidopsis [50,51], tomato 
[52], maize [53] and rice (Y Umehara et al. Abstract 
#141, Plant Genome I, San Diego, November  9-11, 
1992). In tomato, Martin et al. [52] obtained 22000 
clones and screened half of the library with RFLP 
markers tightly linked to two disease resistance loci, 
Tm2a and/:'to. Five YACs were  isolated in this screen, 
which mark starting points for chromosome walks to 
these genes. Recently, a maize YAC library with three 
haploid genome equivalents was constructed [53]. The 
library was assembled in such a way that it can be 
rapidly screened by PCR [54]. Richards et al. [551 re- 
cently constructed a half-YAC library and isolated two 
biologically functional Arabidopsis thaliana telomeres 
in yeast. 

Complete physical maps 
Physical maps are valuable in studying the organiza- 
tion and evolution of plant chromosomes.  In situ hy- 
bridization provides a 'global' view of genome organi- 
zation [56]. Contig maps, assembled using high-density 

Gene identification 
The most direct approach to gene identification from a 
candidate YAC or cosmid is to complement  a mutant 
by  transformation. Giraudat et al. [59] recently demon-  
strated mutant complementat ion of the abi3 gene using 
a subclone from one of three overlapping cosmids iso- 
lated using a linked RFLP. A YAC or a cosmid can be 
used as a probe to identify cDNAs specific to the can- 
didate region. Mutant and normal cDNAs can then be 
sequenced to look for potential mutations. The best 
candidate cDNA can then be used for mutant com- 
plementation, or to create a mutation using antisense 
technology. Arondel et al. [60"] recently isolated a set 
of  overlapping YACs which covered the fad3 locus of  
Arabidopsis. One YAC was used to screen a cDNA li- 
brary made from developing seeds from a closely re- 
lated species (Brassica napus). A heterologous cDNA 
was isolated and shown to complement  the fad3 allele. 

When  no cDNA can be found, the YAC insert must 
be  subcloned into overlapping fragments, and com- 
plementation attempted with each subclone indepen- 
dently. This is t ime-consuming and labor-intensive. 
Several groups have demonstrated stable integration 
[61-63] or complementat ion [64] of mammalian muta- 
tions with entire YAGs. Transfer of  whole YACs into 
plants will streamline gene identification. 

Conclusion 

For much of the 20th century, biologists have been 
aware of  the potential that genetic markers hold for 
the investigation of complex questions in biology. The 
novel field of genome mapping  now has a sufficient 
basis of  technology and information to realize this 
potential in a few well-studied plants. Exploitation of 
comparative map  information will promote  continued 
technological improvement,  and facilitate extension of 
genome mapping to tess facile species. We believe 
that the next few years will provide tangible results of 
genome mapping  progress in the form of cloned genes, 
improved cultivars, and a better understanding of plant 
biology. 
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