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Abstract

Meiotic recombination is a crucial cellular process, being one of the major drivers of evolu-

tion and adaptation of species. In plant breeding, crossing is used to introduce genetic varia-

tion among individuals and populations. While different approaches to predict

recombination rates for different species have been developed, they fail to estimate the out-

come of crossings between two specific accessions. This paper builds on the hypothesis

that chromosomal recombination correlates positively to a measure of sequence identity. It

presents a model that uses sequence identity, combined with other features derived from a

genome alignment (including the number of variants, inversions, absent bases, and CentO

sequences) to predict local chromosomal recombination in rice. Model performance is vali-

dated in an inter-subspecific indica x japonica cross, using 212 recombinant inbred lines.

Across chromosomes, an average correlation of about 0.8 between experimental and pre-

diction rates is achieved. The proposed model, a characterization of the variation of the

recombination rates along the chromosomes, can enable breeding programs to increase

the chances of creating novel allele combinations and, more generally, to introduce new

varieties with a collection of desirable traits. It can be part of a modern panel of tools that

breeders can use to reduce costs and execution times of crossing experiments.

Introduction

Crossover recombination refers to the exchange of genetic material across homologous chro-

mosomes. It is an important process during meiosis in the production of gametes and contrib-

utes to the creation of novel allele combinations [1–3]. Both biological and biochemical factors

influence the recombination rates along each chromosome. In rice, for example, it has been

shown that recombination rates play a key role for adaptive evolution in rapidly changing

environments and vary with exposure to different stresses [4]. Furthermore, a number of stud-

ies have shown that recombination rates across different regions along a chromosome (i.e., for

windows of a certain size) are not uniformly distributed [5, 6]. Instead, there exists the so-

called hot and cold spots, which represent regions that, when compared to regular regions,
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the Pontificia Universidad Javeriana in Cali and

funded within the Colombian Scientific Ecosystem

by The World Bank, the Colombian Ministry of

Science, Technology and Innovation, the

Colombian Ministry of Education and the

https://orcid.org/0000-0003-3417-8950
https://orcid.org/0000-0002-3945-7820
https://orcid.org/0000-0003-2393-6066
https://orcid.org/0000-0002-6441-0688
https://doi.org/10.1371/journal.pone.0281804
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281804&domain=pdf&date_stamp=2023-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281804&domain=pdf&date_stamp=2023-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281804&domain=pdf&date_stamp=2023-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281804&domain=pdf&date_stamp=2023-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281804&domain=pdf&date_stamp=2023-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281804&domain=pdf&date_stamp=2023-02-16
https://doi.org/10.1371/journal.pone.0281804
http://creativecommons.org/licenses/by/4.0/


exhibit relatively high and low rates of recombination. According to [4, 7, 8], the location of

such regions varies between populations, primarily as a result of population history.

Over generations, recombination has played an important role in the evolution of the

genome in plants [6]. Evidence suggests that recombination responds not only to direct selec-

tion, but also to the effects of indirect selection over different traits [7]. From the perspective of

agricultural growth and development, understanding recombination rates enables plant breed-

ers to develop better criteria for determining: (i) which varieties represent the most suitable

parents for crosses and (ii) which progeny make the selection process highly effective [9].

More specifically, estimating the recombination rates along the chromosomes accelerates the

fine mapping of genetic traits [10], which lies at the heart of efforts to design better crops [2].

The design and development of experiments to measure recombination rates between vari-

eties is a demanding task, both in terms of costs and time. Such efforts require, first, a large

number of recombinant descendants and, second, a large number of markers from high

throughput next generation sequencing. Not surprisingly, several studies have introduced dif-

ferent strategies to characterize recombination rates in the chromosomal arms [2, 3, 8, 11–15].

These studies generally evaluate several varieties to construct a genomic recombination land-

scape for a species as a whole. They tend to follow one of two general approaches. One main

approach seeks to discover and understand which factors explain recombination, identifying

features of the genome, and searching for associations with high or low levels of recombina-

tion. The second main approach aims to predict either the location of hot and cold spot, or to

estimate the recombination rates in the chromosome using different types of genome sequence

information by usually applying machine learning models.

Following the first approach, the work by Rodgers-Melnick et al. [11] identifies recombina-

tion breakpoints in populations of U.S. and Chinese maize. The authors show that the distribu-

tion of gene density and CpG methylation explains, on a broad scale, cross-overs. In another

closely-related study, Colomé-Tatché et al. [12] evaluate the combined effect of removing

sequence polymorphisms and repeat-associated DNA methylation on the meiotic recombina-

tion landscape of an Arabidopsis mapping population. Similarly, Horton et al. [13] test 1, 307

worldwide Arabidopsis accessions to characterize the pattern of recombination history. The

authors observe an enrichment of hot spots in regions of intergenic space and repetitive DNA.

Finally, Haas et al. [2] identify AT-rich DNA motifs associated with recombination break-

points in 60 recombinant inbred lines of tomato.

One of the first studies to follow the second approach is the work by Liu et al. [8]. Based on

sequence k-mer frequencies, the authors predict hot and cold spots in yeast using a machine

learning method known as increment of diversity combined with quadratic discriminant anal-

ysis. The work is extended in [14] by introducing an algorithm to predict hot and cold spots in

yeast. Unlike [14], the work by Demirci et al. [15] applies features related to genome content

and genomic accessibility, such as gene annotation, propeller twist and helical twist, and AT/

TA dinucleotides to train different machine learning models (specifically, decision trees, logis-

tic regression, and random forest models). Their work predicts hot and cold spots in maize,

rice, tomato, and Arabidopsis. A more recent work by Adrion et al. [3] proposes a method to

predict the recombination landscape based on deep learning algorithms; they evaluate model

predictions in African populations of Drosophila melanogaster. Finally, Peñuela et al. [16]

trained an extra trees machine learning model to predict recombination in rice using methyl-

ated cytosines in the CHH context.

A number of studies that follow the second approach characterize broad-scale recombina-

tion rates for windows of certain size along a chromosome. They tend to focus on a given pop-

ulation or species. However, little attention has been paid to developing analytical frameworks

that help explain recombination rates for a specific crossing between two particular varieties.
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The lack of such models limits the applicability of the outcome of studies that follow the sec-

ond approach for breeding programmes. To overcome this limitation, the validation of such

models is required. The lofty aim of the mechanism-based models is that the principles for pre-

diction are generalizable and applicable to other varieties or species.

This paper focuses on predicting specific recombination rates that result as the product of a

crossing between the rice (Oryza sativa L.) varieties of IR64 (indica) and Azucena (japonica).

Since they are genetically distant varieties, developing a prediction of recombination between

them may shed light on predicting recombination in closer varieties. A large number of studies

that aim to estimate recombination rates focus on rice for several reasons. Among them, rice is

highly homozygous, which makes haplotype reconstruction easy and also eliminates the need

of phasing. Moreover, rice provides food for more than half the world’s population [17]. In

particular, this work explores the hypothesis that an identity measure between genome

sequences of the parents is correlated with chromosomal recombination. The analysis is per-

formed based on whole genome sequencing of both rice varieties and their recombinant

inbred lines.

The main result of this work suggests that the sequence identity is positively correlated

with chromosomal recombination. The model can predict recombination using parental

sequences as its input. Unlike the above-mentioned models based on machine or deep learning

approaches, this is a mechanism-based model whose outcome is the result of a series of steps

applied to specific features measured after the alignment process between parental sequences.

The model is calibrated on Chromosome 1 and tested on the remaining 11 chromosomes. The

validation of the model shows that the prediction for the rice chromosomes has an average cor-

relation of 80% with the recombination rates. It has the potential to become a tool improving

plant breeding programs in rice cultivars.

Materials and methods

The IR64 (indica cluster) and Azucena (tropical japonical cluster) varieties were crossed to

generate a F1 generation. A total of 212 F8 recombinant inbred lines (RIL) were generated in

the greenhouse at IRD, France, by single-seed descent (SSD) from the F2. Then, the lines were

advanced in the field to the F12 generation at the International Center for Tropical Agriculture

(CIAT, now “Alliance Bioversity-CIAT”) in Palmira, Colombia. This population is also part of

a Nested association Mapping design [18].

Whole genome sequencing

Leaf tissue from parent plants and F12 lines were collected, and DNA was extracted follow-

ing a protocol similar to [18]. Platinum-grade PacBio assemblies of the parental genomes

were obtained at the Arizona Genomics Institute (AGI, Tucson, Arizona) [19]. The IR64 and

Azucena genomes that were used are available in the GenBank repository with the accession

numbers RWKJ00000000 and PKQC000000000, respectively. The F12 RIL genomes were

sequenced using paired-end Illumina with a depth of approximately 1x.

Data imputation and recombination values

SNP features for the F12 genomes were extracted using a standard bioinformatics pipeline.

Briefly, Illumina reads were mapped on the IR64 RefSeq, and SNP features were extracted with

the GATK package. Genotypes and recombination breakpoints (that is, meiotic crossovers)

were imputed and corrected using the NOISYmputer algorithm introduced in [20]. The result-

ing genotypes data for each chromosome consist of a matrix of genetic markers (arranged

by sequence position) versus individuals. An entry is encoded as A or B depending on the
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parental origin of the corresponding sequence. Genetic recombination maps were calculated

with MapDisto v2 [21, 22], using the Kosambi mapping function to convert recombination

fractions into centimorgans (cM) [23].

Recombination measurement

Cublic spline smoothing of local recombination rates, expressed as cM/bp, were calculated in

sliding windows in MapDisto v2. A window size of 100 kb was chosen to measure recombina-

tion because it provides a detailed description of how crossovers occur along the chromosome.

Especially, it helps to find out what exactly happens in regions where recombination rates are

high. When the window size is larger, like 1 Mb for example, the recombination rates of the

windows can be very high due to the accumulation of many crossover events. The problem is

that it is not possible to know where these crossovers are located, they can all be at the begin-

ning of the window, or at the end, and they can even be evenly distributed throughout the win-

dow. Large window sizes can also lead to more noise in the data, because neighboring

windows can vary widely, making them difficult to handle in statistical analyzes. In addition,

by increasing the window size, the number of windows per chromosome decreases, which

makes it difficult to train the models to make and evaluate predictions. On the other hand, if

the window size is smaller, few crossover events can be count for window, it would be neces-

sary to have a larger experiment with a much larger number of RILs to be able to obtain counts

for most windows. Experiments were developed to find an appropriate window size for our

data and objectives; according to them, the 100 kb window size was chosen because it results

in a significant number of crossover events without losing precision.

Data pre-processing protocol

The purpose of this work is to predict recombination for each pair of homologous chromo-

somes from two parental organisms. The proposed approach is based on the hypothesis that

the recombination frequency can be approximated by a function of the genome similarity. To

measure genome similarity, a metric called identity was constructed taking into account fea-

tures of the alignment of the two parental sequences.

Arbitrarily, one of the parental organisms is taken as reference. Each pair of homologous

chromosomes is identified by a reference chromosome (ref) and a query chromosome (qry).

Each pair (ref, qry) is aligned using the MUMmer3 [24] software. The nucmer command with

default parameters performs the initial alignment. The outcome is a delta file which is filtered

using the command delta-filter -r -q. The filtered file is used to extract coordinates

into a coords file, using the command show-coords -r. Sequence variants are extracted

into a snps file, from the initial delta file using the command show-snps.

Subsequently, and using Python software from this point on, the reference chromosome

sequence is subdivided into n 2 N > 0 windows of length 100 kb each. Three features for each

window are computed from the coords and snps files:

• Inversions: proportion of reference bases belonging to regions aligned in the reverse direc-

tion (3’-5’).

• Absent bases: proportion of query bases that are not mapped in the reference chromosome.

• Variants: proportion of bases corresponding to SNPs and deletion polymorphisms.

The identity criteria is concretely defined in terms of the three above-mentioned features.

It is also parametric on the windows partitioning a chromosome. Let W = {1, 2, . . ., n} repre-

sent the n windows partitioning a given chromosome. Functions I, A, and V next represent the
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inversions, absent bases, and variants measures, respectively. They are defined from the set W
of windows to the closed real interval [0, 1]. More specifically, these functions are defined as I:
W! [0, 1], A: W! [0, 1], and V: W! [0, 1]. The identity criteria function Id0 maps the set

of windows to a real number: the higher its value, the closer the two sequences genetically are

in the given window. In other words, the identity is equal to 1 if the two compared windows

are identical, but in the presence of inversions, absent bases, or variants, the identity is

decreased. Mathematically, Id0 is defined for each window w 2W by the equation:

Id0ðwÞ ¼ 1 � ðVðwÞ þ IðwÞ þ AðwÞÞ: ð1Þ

For each window w, Id0(w) quantifies a genetic distance between two (parental) sequences

where variants, inversions, and absent bases are used to linearly penalize the identity measure.

This criteria is used for pre-processing each pair of parental sequences and it is at the basis of

the proposed model for recombination prediction.

Testing hypothesis

Under the hypothesis that similar genomic regions recombine more frequently, a correlation

analysis was developed between the identity criteria and the local recombination values for the

twelve rice chromosomes. The Pearson’s correlation coefficient was used as the measure of

correlation r. The identity and the recombination were exponentially smoothed to reduce

noise and find the best fit with the trend of the data. For example, functions X and Xs represent

the experimental recombination and the smoothed experimental recombination, respectively.

Both functions are defined for each window w 2W; in particular, Xs is defined by the equa-

tion:

XsðwÞ ¼
XðwÞ w ¼ 0

aXðwÞ þ ð1 � aÞXsðw � 1Þ w > 0;

(

ð2Þ

where α 2 (0, 1) is the smoothing factor. For the correlation analysis, both identity and experi-

mental recombination were smoothed with the same factor. Various exponential smoothing

factors were evaluated in each chromosome to try to reduce noise and find the best fit with the

data trend (Figs 1 and 2), being α = 0.1 the one giving the best fit in all cases. This smoothing

factor was selected and applied to subsequent evaluations on the model predictions.

Model

A four-step model based on alignment data is developed. The first step applies three cases to

modify the identity of each window to maximize the effect of zones with low and high identity

values. The second step adjusts the output so that negative values with no biological interpreta-

tion are corrected. The third step performs a centromeric correction based on CentO

sequences to improve the prediction of low recombination near the centromere. Finally, the

fourth step implements a smoothing to reduce noise, allowing a cleaner evaluation of the pre-

dictions. The model contains 7 parameters which transform the identity to predict the recom-

bination rate by each window (Fig 3). A model implementation in Python is publicly available

at https://github.com/criccio35/Rice-recombination-predictor.

Step 1: Cases. In the first step of the model, three cases are defined to alter the identity of

some windows, and to better fit valleys and peaks of real recombination using sequence

information.

The first case, the penalty stage, is coherent with the idea that regions with low identity

recombine less. Therefore, a window with low identity value should be penalized (further
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decrease its value), in contrast to a window with high identity values that should remain intact.

More precisely, a constant value is subtracted from the windows where the non-identical part

has a considerable influence of the variants. This stage causes regions with such features to

form valleys, thus increasing the correlation with chromosomal recombination rates. Biologi-

cally, these adjustments model the fact that few recombination events are expected if there is

no high genomic identity between parental chromosomal regions. This observation is in accor-

dance with the initial hypothesis of this study.

The second case, the reward stage, consists of rescuing windows with low identity values

and small influence from the variants. The reason for doing this is that there could be align-

ment fragments with high (almost perfect) identity values, and with size smaller than the 100

Kb window and having low variants proportion. Therefore, this case is useful to predict recom-

bination peaks in regions with low or average identity.

Fig 1. Effect of exponential smoothing on recombination and identity signals along the chromosome. The graphs

on the left show the chromosome recombination rate in orange and identity values in grey at different levels of

smoothing, where α = 1 is no smoothing, α = 0.5 an intermediate smoothing, and α = 0.1 a strong smoothing (where

the noise disappears). The horizontal red line is a reference that helps to visualize the decrease of large recombination

values. The scatter plots on the right show the relationship between identity and experimental recombination at each

smoothing level; the dots represent the 100 kb windows of the left graphs.

https://doi.org/10.1371/journal.pone.0281804.g001

Fig 2. Effect of exponential smoothing on correlation distribution. Boxplots of correlation between identity and

recombination for 12 rice chromosomes (cross IR64 x Azucena) at different levels of exponential smoothing. Note that

identity is a ratio while experimental recombination is a rate in cM/100kb. The correlation values increases as the

smoothing value increase, thus reducing noise.

https://doi.org/10.1371/journal.pone.0281804.g002
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The third case, the correction stage, is included in order to deal with windows with an over-

adjustment in the alignment process; mainly, windows with high identity values that are not

dealt with by the previous two cases. Specifically, the correction consists of subtracting a con-

stant factor from the identity values with absent bases and low influence of the variants. If

there are absent bases in a window, it means that the data in the window is constructed from

more than one contig. Furthermore, such a window contains few variants, probably because

the information depends on multiple contigs that do not accurately represent the structure of

the corresponding chromosomal region. For windows in which none of the three previous

cases are applied, the initial identity values are assigned.

Mathematically speaking, summarizing the cases explained above, three mutually exclusive

cases are considered starting from the identity values mapped by the function Id0. The model

has a total of 7 parameters which belong to the closed interval [0, 1]. The parameters are classi-

fied into two groups: (i) the constant factors p1, p2, and p3 that modify the identity values in

each case, and (ii) the thresholds t1, t2, t3, and t4 that define when to apply the cases. The first

case penalizes with p1 the identity of those windows with identity values inferior to t1. The sec-

ond case rewards with p2 the windows with identity values inferior to t2. The third case penal-

izes with p3 the windows with absent bases greather than t3. An additional constraint to apply

case one is that the variants must be above t4, while for the cases two and three variants must

be below the same threshold (t4). Thus, identity values are updated with the function Id1

defined from the set W of windows to the closed real interval [−1, 2], that is Id1: W! [−1, 2].

For each window w 2W, Id1 is defined as:

Id1ðwÞ ¼

Id0ðwÞ � p1 ; Id0ðwÞ < t1 ^ VðwÞ > t4

Id0ðwÞ þ p2 ; Id0ðwÞ < t2 ^ VðwÞ < t4

Id0ðwÞ � p3 ; AðwÞ > t3 ^ VðwÞ < t4

Id0ðwÞ ; otherwise:

8
>>>>>>><

>>>>>>>:

ð3Þ

Fig 3. Model workflow. Schematic representation of data preprocessing and model steps to predict recombination.

The preprocessing protocol receives two parental sequences as input and produces a measure of identity between the

two sequences. The model receives this identity as input and outputs the predicted chromosomal recombination rate.

https://doi.org/10.1371/journal.pone.0281804.g003
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Fig 4 presents a graphical description of the identity modification process, as a decision dia-

gram, according to the thresholds that are validated in each case.

Step 2: Negative values. The second step of the model consists of zeroing the negative val-

ues resulting from the first step. This is necessary because, biologically, recombination rates

are always positive and negative recombination values do not make biological sense. There-

fore, only non-negative values are considered. Mathematically, this step produces a function

Id2 defined from the set of windows W to the real closed interval [0, 2]. More specifically, the

new updated identity Id2: W! [0, 2] is defined for each w 2W as:

Id2ðwÞ ¼ maxð0; Id1ðwÞÞ ð4Þ

Step 3: Centromere correction. The third step of the model attempts to predict the

boundaries of the centromeric region and adjust the nearby identity values. CentO(AA)

sequence reported by Lee et al. [25] is mapped on the reference and query chromosomes

counting the frequency of aligned bases within each window. Let wcentO be a function that

maps a chromosome to the set of windows having the greatest number of alignments with the

CentO sequence. Note that wcentO outputs a non-empty subset of the set of windows W for

both reference (ref) and query (qry) chromosomes (wcentO(ref) [ wcentO(qry)�W). Then,

the centromere boundaries can be approximated by the interval [c0, c1] defined by:

c0 ¼ minðwcentOðref Þ [ wcentOðqryÞÞ ð5Þ

c1 ¼ maxðwcentOðref Þ [ wcentOðqryÞÞ ð6Þ

That is, c0 and c1 are the left- and right-most windows with the greatest number of alignments

with the CentO sequence, among the two chromosomes input to the model.

Next, a weight function is constructed to correct the predictive values near the boundaries

of the centromere (see Fig 5), where recombination is expected to be lower than in the rest of

the chromosome. This function maps to zero all the values between c0 and c1. The values of the

50 windows further to the left (right) of c0 (c1) are multiplied by a decreasing (increasing) lin-

ear function with minimum value zero and maximum value one. There is a special case of telo-

meric chromosomes having a Nucleolar Organizer Region (NOR) on the short arm, which is

known to block recombination [26, 27]. In this case all values to the left of c1 are mapped to

zero while values to the right are mapped to one. The latter should be considered only when

the centromeric region is within the first quarter of the chromosome (e.g., rice chromosome

9). Therefore, two weight functions are defined, a function f for centromeric chromosomes,

Fig 4. Decision tree to modify the identity value in Step 1. The window identity can be modified according to

different thresholds t for; the identity values Id0, the variants V and the absent bases A. In each case a modifcation is

applied to the identity value adding or subtracting a constant factor p. If no case is applied, the identity value remains

unchanged.

https://doi.org/10.1371/journal.pone.0281804.g004

PLOS ONE Prediction of crossover recombination using parental genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0281804 February 16, 2023 8 / 21

https://doi.org/10.1371/journal.pone.0281804.g004
https://doi.org/10.1371/journal.pone.0281804


and a function g for the telomeric chromosomes. Both functions are defined from the set of

windows W, with function f mapping to the closed real interval [0, 1], and function g mapping

to the set {0, 1} as follows:

f ðwÞ ¼

1 ; 0 � Id2ðwÞ � c0 � 50

� 1

50
ðw � c0Þ ; c0 � 50 < Id2ðwÞ � c0

0 ; c0 < Id2ðwÞ � c1

1

50
ðw � c0Þ ; c1 < Id2ðwÞ � c1 þ 50

1 ; c1 þ 50 < Id2ðwÞ < n

8
>>>>>>>>>><

>>>>>>>>>>:

ð7Þ

gðwÞ ¼
0 0 � Id2ðwÞ < c1

1 c1 � Id2ðwÞ � n

(

ð8Þ

Finally, the identity values from Id2 are corrected by the function Id3: W! [0, 2], using the

weight functions f and g as follows:

Id3ðwÞ ¼
Id2ðwÞ � f ðwÞ c1 > n=4

Id2ðwÞ � gðwÞ otherwise;

(

ð9Þ

where c1, as defined above, is the left boundary of the centromere, and n is the total number of

windows of the reference chromosome.

Step 4: Smoothing. The fourth step, consisting of applying a special adaptation of expo-

nential smoothing that replaces the value of the first window with zero, allows the prediction

Fig 5. Centromere detection. Centromere detection using CentO sequences and CentO-based centromere correction

distribution for rice chromosomes 3, 7 and 9. The plots on the left show the count of CentO alignments in 100 kb

windows for the reference sequence in blue and the query sequence in yellow. The vertical gray dashed line indicates a

quarter of the chromosome length, which is used to identify whether the chromosome is metacentric or telocentric and

thus choose the weight function for centromere correction. The graphs on the right show the weight function in green

applied for each case, at the top when the two peaks are together, in the middle when they are separated and at the

bottom when these two peaks are before the quarter of the chromosome.

https://doi.org/10.1371/journal.pone.0281804.g005

PLOS ONE Prediction of crossover recombination using parental genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0281804 February 16, 2023 9 / 21

https://doi.org/10.1371/journal.pone.0281804.g005
https://doi.org/10.1371/journal.pone.0281804


of the recombination rate to start at zero as actually occurs in the experimental data. Here α =

0.1 is used as defined in Section Testing hypothesis for the usual exponential smoothing. Thus,

the final prediction of recombination is given by the function Id4, which maps the set of win-

dows W to the real closed interval [0, 1] (i.e., Id4: W! [0, 1]). This function smoothes the

identity values of Id3, for each window w 2W, as follows:

Id4ðwÞ ¼
0 w ¼ 0

aId3ðwÞ þ ð1 � aÞId4ðw � 1Þ w > 0:

(

ð10Þ

Parameter optimization and model evaluation

The two metrics involved in the evaluation and calibration of the model are the Pearson corre-

lation r and the coefficient of determination R2. Given data {(x1, y1), . . ., (xn, yn)} consisting of

n pairs, these two metrics are defined as follows:

r ¼
Pn

i¼1
ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxi � �xÞ2

Pn
i¼1
ðyi � �yÞ2

q ð11Þ

R2 ¼ 1 �

Pn
i¼1
ðyi � ŷiÞ

2

Pn
i¼1
ðyi � �yÞ2

ð12Þ

where �x is the sample mean and ŷ is the fitted linear regression between x and y.

The 7 model parameters (p1, p2, p3, t1, t2, t3, and t4) are adjusted by maximizing the coeffi-

cient of determination R2 between the final prediction of the model Id4 (see Eq 10) and the

experimental recombination Xs (see Eq 2) of a single chromosome. The parameter optimiza-

tion was done by the Sequential Least Squares Programming (SLSQP) minimizing (1 − R2).

The model is adjusted from information on one chromosome and the adjusted model is used

to predict recombination on the remaining 11 chromosomes. The prediction performance for

each chromosome is evaluated based on the Pearson correlation r, and the coefficient of deter-

mination R2 between its output and the experimental recombination.

Results and discussion

Sequence identity versus recombination

The identity criteria values between parental chromosome sequences correlates positively with

their progeny experimental recombination rates, as shown in Figs 6 and 7. These positive cor-

relations are not complete because several windows move away from the linear relationship;

however, it contains enough information to show trends. This supports the hypothesis that

similar genome regions recombine more frequently than regions with higher structural differ-

ence [28, 29], a relationship that could explain several evolutionary mechanisms. The identity

sensus stricto measures the ratio of identical bases between two sequences and can accurately

represent the structural variability because every base that is not equal between sequences is

marked as a variant, inversion, or absent base. This even eliminates a common problem such

as repetitive sequences because they are absorbed by the identity measure. The identity is in

great proportion conditioned by the alignment process. A good alignment process by itself is

not sufficient for a proper identity estimation, because contigs do not follow a strict pattern

due to structural rearrangements. As a consequence, the resulting alignment is filled with

paired and unpaired regions, and in many cases with inversion events or overlapping, without
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Fig 6. Identity correlation analysis for chromosomes 1 to 6 (cross IR64 x Azucena). On the left the landscape of

experimental recombination (orange) and identity criteria (grey) are shown by windows of 100 kb along each

chromosome. On the right scatterplots of experimental recombination vs. identity for each chromosome shows

positive trends between them. The dots represent the 100 kb windows of the left graphs. The value of the

corresponding Pearson correlation coefficient r is shown in parentheses next to the chromosome name.

https://doi.org/10.1371/journal.pone.0281804.g006
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Fig 7. Identity correlation analysis for chromosomes 7 to 12 (cross IR64 x Azucena). On the left the landscape of

experimental recombination (orange) and identity criteria (grey) are shown by windows of 100 kb along each

chromosome. On the right scatterplots of experimental recombination vs. identity for each chromosome shows

positive trends between them. The dots represent the 100 kb windows of the left graphs. The value of the

corresponding Pearson correlation coefficient r is shown in parentheses next to the chromosome name.

https://doi.org/10.1371/journal.pone.0281804.g007
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counting on the abundant variants such as SNPs and indels polymorphisms. Therefore, a pro-

tocol, which allows to quantify the identity and other variables using a windows-based

approach, is developed.

The mean correlation between recombination rates and sequence identity evaluated for the

12 rice chromosomes in the IR64 x Azucena cross is r = 0.56±0.21. This positive correlation is

important because a single variable is supporting a considerable magnitude of the explanation.

However, identity is an aggregated variable that implicitly carries the information of other

structural variables. More specifically, identity is the ratio of bases that do not correspond to

variants, inversions, or absent bases within a genome interval.

The higher correlations are found on chromosomes 9 and 2 with 0.809 and 0.723 respec-

tively; meanwhile, lower correlations are found on chromosomes 5 and 12 with −0.009 and

0.362, respectively, being Chromosome 5 the unique with near zero, negative correlation. This

can be explained because the alignment of Chromosome 5 between these two varieties has a

high identity in the centromere region, originating a trend opposite to that observed in other

chromosomes, which usually report low identity values in centromeric regions.

In Figs 6 and 7 can also be noted, for each scatterplot, a set of points with low identity values

that align almost in a straight line with the experimental recombination values. In theory,

these points may have an effect by increasing the correlation scores between the identity and

experimental recombination. However, to rule this situation out, points with identity values

less than 0.4 were removed and the correlation recalculated. It was found that the correlations

increased in all chromosomes, except in Chromosome 9, where the correlation decreased by

0.059. Chromosome 1 had the smallest increase in correlation with a gain of 0.045, while Chro-

mosome 5 had the highest increase in correlation with a 0.708 gain. This indicates that the

inclusion of these data with low identity in the analysis does not increase the correlation values,

which gives reliability to the analysis performed with all the data.

Sequence identity by itself can reproduce some peaks and valleys of the recombination

landscape, indicating that recombination is greatest in regions where identity between

genomes is greatest and least where it is not. Thus, if genomic identity is highly correlated with

chromosomal recombination, it can be used as a starting point for the construction of a model

whose aim is to predict recombination. In consequence, a model based on sequence identity

was developed.

Parameter optimization and model evaluation

The model was calibrated on each of the twelve chromosomes. Each calibration resulted in a

different set of optimal parameters shown in Table 1.

Table 1. Parameters for each model calibration.

parameter chr01 chr02 chr03 chr04 chr05 chr06 chr07 chr08 chr09 chr10 chr11 chr12

p1 0.529 0.480 0.568 0.563 0.470 0.469 0.508 0.453 0.476 0.467 0.380 0.504

p2 1.000 0.000 0.102 1.000 0.000 0.998 1.000 0.000 0.000 0.000 0.000 1.000

p3 1.000 1.000 0.500 0.666 1.000 1.000 0.700 0.100 0.500 1.000 1.000 0.537

t1 0.970 0.960 0.950 0.940 0.940 0.970 0.930 0.940 0.920 0.960 0.920 0.940

t2 0.900 0.300 1.000 0.100 0.600 0.900 0.600 1.000 0.700 0.300 0.700 0.900

t3 0.000 0.000 0.100 0.000 0.000 0.000 0.100 0.100 0.100 0.000 0.000 0.000

t4 0.002 0.002 0.001 0.004 0.002 0.002 0.005 0.004 0.001 0.002 0.005 0.003

The columns indicate the chromosome on which the model was calibrated and its corresponding set of optimum parameters.

https://doi.org/10.1371/journal.pone.0281804.t001
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The 12 model calibrations were used to test the prediction on the remaining eleven chro-

mosomes. Fig 8 shows the distribution of the values r and R2 obtained when evaluating the

twelve predictions of each model calibration. The results look similar in all cases for both r and

R2. Furthermore, a two-sample Kolmogorov-Smirnov test, was performed between the evalua-

tions of each pair of model calibrations. The test output indicated that the difference between

the R2 distributions is not statistically significant (all p-values > 0.05). The same happens with

the distributions of r (all p-values >0.05). Therefore, the 12 distributions of R2 are not signifi-

cantly different from each other, nor are the 12 distributions of r. This means that using the

model calibrated on any arbitrarily chosen chromosome does not generate significant changes

in the prediction performance.

Predictions

For practical reasons, some results discussed below are focused on the prediction obtained

with the model calibrated on Chromosome 1, which turns out to be the longest chromosome

and therefore the one that provides the greatest amount of data for calibration. Nevertheless,

recall that all 12 calibrations have been used and consistent results have been obtained.

Overall, for all 12 calibrations of the model, the predicted recombination have a correlation

of r = 0.8 ± 0.06 and a coefficient of determination R2 = 0.45 ± 0.25, which shows the power of

the model to reproduce recombination trends along chromosomes. In terms of correlation,

the lowest average value belongs to the model calibrated with chromosome 3

(r = 0.757 ± 0.074). The lowest average coefficient of determination belongs to the model cali-

brated with Chromosome 1 (R2 = 0.326 ± 0.408, r = 0.789 ± 0.065). While, the model calibrated

with Chromosome 5 has the highest average performance for both evaluation metrics:

r = 0.807 ± 0.065 and R2 = 0.524 ± 0.17. It should be noted that the correlation on the cali-

brated chromosome (r = 0.708) is lower than the correlations of the remaining predictions on

the other 11 chromosomes (r = 0.796 ± 0.063). The latter indicates that this model is not over-

fitted to the observed data and is capable of predicting recombination rates of independent

datasets, even achieving better performance.

Figs 9 and 10 depict, on the left, the landscape for the experimental recombination, identity,

and model predictions. The shaded blue band on each chromosome represents the standard

deviation of the predictions made with the 12 calibrated models. The width of these bands

indicates that the predictions from any of the model calibrations are consistent across all

Fig 8. Boxplot distributions of model performance. Distributions of correlation r and coefficient of determination R2

show that there is no significant difference in recombination predictions when the model is calibrated on different

chromosomes. Each boxplot represents the values obtained for the remaining 11 chromosomes when the model was

calibrated on the indicated chromosome.

https://doi.org/10.1371/journal.pone.0281804.g008
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Fig 9. Model correlation analysis in chromosomes 1 to 6 (cross IR64 x Azucena). On the left, the landscape of

experimental recombination (orange), identity criteria (grey), and predicted recombination calibrated with

chromosome 1 (blue) are shown by windows of 100 kb along each chromosome. The shaded blue band represents the

standard deviation of the predictions for different calibrations, and the mean correlations and coefficients of

determination are presented next to the chromosome name. The colored bars at the bottom indicate which case from

Step 1 of the model is applied to each window. On the right, for each chromosome, a scatterplot of experimental vs.

predicted recombination calibrated with Chromosome 1 shows positive trends between them. The dots represent the

100 kb windows of the graphs on the left and colors indicate the case that was applied in the first step of the model for

each window. Inside each boxplot, the correlation and coefficient of determination values between model prediction

and experimental recombination using the calibration in Chromosome 1 is presented.

https://doi.org/10.1371/journal.pone.0281804.g009
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Fig 10. Model correlation analysis in chromosomes 7 to 12 (cross IR64 x Azucena). On the left, the landscape of

experimental recombination (orange), identity criteria (grey), and predicted recombination calibrated with

Chromosome 1 (blue) are shown by windows of 100 kb along each chromosome. The shaded blue band represents the

standard deviation of the predictions for different calibrations, and the mean correlations and coefficients of

determination are presented next to the chromosome name. The colored bars at the bottom indicate which case from

the first step of the model is applied to each window. On the right, for each chromosome, a scatterplot of experimental

vs. predicted recombination calibrated with Chromosome 1 shows positive trends between them. The dots represent

the 100 kb windows of the graphs on the left and colors indicate the case that was applied in the first step of the model

for each window. Inside each boxplot, the correlation and coefficient of determination values between model

prediction and experimental recombination using the calibration in Chromosome 1 is presented.

https://doi.org/10.1371/journal.pone.0281804.g010
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chromosomes. Figs 9 and 10 depict, on the right, the linear relationship between the experi-

mental recombination and the prediction of the model calibrated with Chromosome 1. These

linear relationships between the model predictions and the experimental recombination are

greater than those obtained with the identity, showing less dispersion in the scatter plot and

higher correlation coefficients, and indicating that the model outputs can better reproduce the

data trends. The marker color in the scatter plot, and the bar color at the bottom of the line

plots, represents the case of the model that was applied in a specific window.

It is important to analyze the incidence of the cases, from Step 1 of the model, in the predic-

tion of recombination. For all chromosomes, regardless of model calibration, the first case is

the most applied in 68.5% of the chromosome windows on average, followed by the non-appli-

cation of any case 25.8%. Meanwhile, the cases two and three are the least applied, with an

average of 3.5% and 2.1%, respectively. This indicates that the first case of Step 1 is the one that

contributes the most to the prediction of the model for all chromosomes, allowing the forma-

tion of medium and low recombination regions. Despite the fact that cases two and three have

a low incidence in the chromosomal windows, they help to define particular areas that escape

the action of the first case.

Both experimental recombination and predictions are similarly distributed according to the

identity in Fig 11. Note that, with respect to identity, the proposed model markedly increased

the correlation and the coefficient of determination, as shown in Fig 12. The average increase

in correlation, across all calibrations and tested chromosomes, is 0.237 ± 0.197, meanwhile the

increase in the coefficient of determination is 8.25±3.84, being the gain of prediction different

for each chromosome. This gain is obtained because the different steps of the model transform

the identity values of each 100 kb window, which helps to better represent peaks and valleys in

the chromosomal arms and, in general, to identify the centromeric regions.

Chromosome 5 is an extreme case gaining 0.769 ± 0.048 correlation points with respect to

identity. Other chromosomes with a high gain in correlation are 12 and 3, gaining

0.457 ± 0.025 and 0.306 ± 0.021 correlation points, respectively. These chromosomes, unlike

the remaining 9 chromosomes, do not show a decreasing trend of identity near the centromere

region. However, the application of the cases in Step 1 (see color bars in Figs 9 and 10),

together with centromere correction, best approximate experimental recombination.

It may seem that centromere divergence has a great influence on the model prediction,

since chromosomes with high centromere identity values have higher correlation gains. How-

ever, applying only the centromere correction to the identity does not produce satisfactory

Fig 11. Distributions of experimental recombination and model predictions. Distributions of experimental and

predicted recombination values according to the value of the window identity criteria. The boxes show that the values

between them are similar at different magnitudes of identity.

https://doi.org/10.1371/journal.pone.0281804.g011
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results (see Fig 13). Although this best approximates the trend of experimental recombination

on chromosomes 3, 5, 6, 8, and 11 having a higher correlation, it fails to predict recombination

values on all chromosomes. More specifically, when applying only the centromere correction

the coefficient of determination R2 is in average −0.482 ± 0.376 for all chromosomes, whereas

when applying the complete model the average R2 is 0.453 ± 0.255 for all calibrations applied

to all chromosomes.

Chromosome 9 presents the extreme case of the lowest gain in correlation. This corre-

sponds to a gain of only 0.008 ± 0.027 correlation points across all model calibrations. This

means that the sequence identity is sufficient for Chromosome 9 to describe recombination

rates, even approaching the mean correlation achieved by the model.

Chromosome 9 is unique with its telomeric centromere in rice and is treated differently

in the third step of the model, avoiding the centromere correction applied to the other chro-

mosomes. This special treatment is due to the existence of the Nucleolar Organizer Region

(NOR) in the short arm of the chromosome. The NOR of Chromosome 9 is widely known

to be a region where recombination is suppressed in rice [26], hence the special centromere

Fig 12. Gains in model performance versus identity. Correlation r (left) and coefficient of determination R2 (right) of

identity criteria and model predictions with respect to recombination rates from 12 rice chromosomes (IR64 x Azucena

cross). Base value of identity in gray, the gain of the model in blue. The graphs show the gain in recombination

prediction for each chromosome when the model is used.

https://doi.org/10.1371/journal.pone.0281804.g012

Fig 13. Performance with the complete model and only centromere correction. The graph on the right shows the

correlation values between the recombination prediction and its experimental value when the full model is used and

when only the centromere correction is used. Meanwhile, the left graph shows the coefficients of determination for the

same comparisons. Although the correlations show a similar trend between the two experiments, the prediction is not

satisfactory because the determination coefficients are all negative.

https://doi.org/10.1371/journal.pone.0281804.g013
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correction. However, the effect of this correction in the Chromosome 9 prediction is focused

on the short arm only, and the prediction on the long arm is completely determined by the

other steps of the model. Although sequence identity by itself can generate a high correlation

with the recombination rate for this cross (IR64 x Azucena) on Chromosome 9, the predictive

values of the model continue to be preferred since the magnitude of the values is closer to

those of recombination Fig 10.

Finally, it should be noted that the model predictions reach a high correlation rate for all

the chromosomes evaluated; the model is able to reproduce the recombination landscape of

the rice varieties IR64 and Azucena crossing.

Conclusion

The results presented in this paper show that the proposed criteria for sequence identity is

strongly correlated with chromosomal recombination. The strength of this correlation sup-

ports the introduction of a model based on window “identities”, which is shown to accurately

predict recombination rates along the length of chromosomes. The model is developed using

data on the first chromosome of rice (accessions IR64 and Azucena). It is cross-validated using

the remaining eleven chromosomes. Across all 12 chromosomes, an average correlation of

about 80% between experimental and prediction rates is achieved. Similar results are found

when model training is performed on other chromosomes, being of great importance the gain

in the determination coefficient.

The goal of this model is to enable the prediction of chromosome recombination land-

scapes among rice varieties using only the parental genomes as a source. Such an approach is

particularly useful for breeding purposes, for it offers the potential to optimize crossing

experiments. In particular, model prediction could allow to identify varieties that should bet-

ter recombine than others with recipient genomes and to uncover recombination hot spots

of vertical gene transfer. Predictions between rice varieties using this model should give good

results because the model was developed using information from two genetically distant vari-

eties, which is an extreme case compared to traditional crosses normally made in related

lines.

The ultimate goal of the proposed model is to help breeders to reduce costs and execution

times of crossing experiments. It is to explore, as a future project, the open path to use the

model on other rice varieties, cereal species, and even on the broader spectrum of plants and

animals.

Supporting information

S1 File. Experimental recombination. Experimental recombination values for the 12 rice

chromosomes, Azucena x IR64 cross, in 100 kb windows.
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The authors thank to Nicolás López-Rozo and Chrystian Sosa for comments that greatly

improved the manuscript.

Author Contributions

Conceptualization: Mauricio Peñuela, Jorge Finke, Camilo Rocha, Mathias Lorieux.

Data curation: Mauricio Peñuela.

PLOS ONE Prediction of crossover recombination using parental genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0281804 February 16, 2023 19 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281804.s001
https://doi.org/10.1371/journal.pone.0281804


Formal analysis: Mauricio Peñuela, Camila Riccio-Rengifo.

Investigation: Mauricio Peñuela, Camila Riccio-Rengifo, Jorge Finke, Anestis Gkanogiannis,

Rod A. Wing, Mathias Lorieux.

Methodology: Mauricio Peñuela, Camila Riccio-Rengifo.

Software: Camila Riccio-Rengifo.

Supervision: Jorge Finke, Camilo Rocha, Mathias Lorieux.

Validation: Jorge Finke.

Writing – original draft: Mauricio Peñuela, Camila Riccio-Rengifo.

Writing – review & editing: Mauricio Peñuela, Camila Riccio-Rengifo, Jorge Finke, Camilo

Rocha, Mathias Lorieux.

References
1. Nicklas RB. Chromosome segregation mechanisms. Genetics. 1974; 78(1):205–213. https://doi.org/10.

1093/genetics/78.1.205 PMID: 4442702

2. de Haas LS, Koopmans R, Lelivelt CL, Ursem R, Dirks R, Velikkakam James G. Low-coverage rese-

quencing detects meiotic recombination pattern and features in tomato RILs. DNA Research. 2017; 24

(6):549–558. https://doi.org/10.1093/dnares/dsx024 PMID: 28605512

3. Adrion JR, Galloway JG, Kern AD. Predicting the landscape of recombination using deep learning.

Molecular biology and evolution. 2020; 37(6):1790–1808. https://doi.org/10.1093/molbev/msaa038

PMID: 32077950

4. Si W, Yuan Y, Huang J, Zhang X, Zhang Y, Zhang Y, et al. Widely distributed hot and cold spots in mei-

otic recombination as shown by the sequencing of rice F2 plants. New Phytologist. 2015; 206(4):1491–

1502. https://doi.org/10.1111/nph.13319 PMID: 25664766

5. Choi K. Advances towards controlling meiotic recombination for plant breeding. Molecules and cells.

2017; 40(11):814. https://doi.org/10.14348/molcells.2017.0171 PMID: 29179262

6. Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK. Recombination: an underappreciated factor in

the evolution of plant genomes. Nature Reviews Genetics. 2007; 8(1):77–84. https://doi.org/10.1038/

nrg1970 PMID: 17173059

7. Butlin RK. Recombination and speciation. Molecular Ecology. 2005; 14(9):2621–2635. https://doi.org/

10.1111/j.1365-294X.2005.02617.x PMID: 16029465

8. Liu G, Liu J, Cui X, Cai L. Sequence-dependent prediction of recombination hotspots in Saccharomyces

cerevisiae. Journal of theoretical biology. 2012; 293:49–54. https://doi.org/10.1016/j.jtbi.2011.10.004

PMID: 22016025

9. Brandariz SP, Bernardo R. Predicted genetic gains from targeted recombination in elite biparental

maize populations. The plant genome. 2019; 12(1):180062. https://doi.org/10.3835/plantgenome2018.

08.0062 PMID: 30951097

10. Wijnker E, de Jong H. Managing meiotic recombination in plant breeding. Trends in plant science. 2008;

13(12):640–646. https://doi.org/10.1016/j.tplants.2008.09.004 PMID: 18948054

11. Rodgers-Melnick E, Bradbury PJ, Elshire RJ, Glaubitz JC, Acharya CB, Mitchell SE, et al. Recombina-

tion in diverse maize is stable, predictable, and associated with genetic load. Proceedings of the

National Academy of Sciences. 2015; 112(12):3823–3828. https://doi.org/10.1073/pnas.1413864112

PMID: 25775595
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