De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes

Authors

Matthew B. Hufford, Arun S. Seetharam, Margaret R. Woodhouse, Kapeel M. Chougule, Shujun Ou, Jianing Liu, William A. Ricci, Tingting Guo, Andrew Olson, Yinjie Qiu, Rafael Della Coletta, Silas Tittes, Asher I. Hudson, Alexandre P. Marand, Sharon Wei,
Zhenyuan Lu, Bo Wang, Marcela K. Tello-Ruiz, Rebecca D. Piri, Na Wang, Dong won Kim, Yibing Zeng, Christine H. O’Connor, Xianran Li, Amanda M. Gilbert, Erin Baggs, Ksenia V. Krasileva, John L. Portwood II, Ethalinda K.S. Cannon, Carson M. Andorf,
Nancy Manchanda, Samantha J. Snodgrass, David E. Hufnagel, Qiuhan Jiang, Sarah Pedersen, Michael L. Syring, David A. Kudrna, Victor Llaca, Kevin Fengler, Robert J. Schmitz, Jeffrey Ross-Ibarra, Jianming Yu, Jonathan I. Gent, Candice N. Hirsch,
Doreen Ware, R. Kelly Dawe
Science
Volume 373 | Issue 6555
6 August 2021
 
Received:14 January 2021
Accepted:24 June 2021
Published in print:6 August 2021
 

An a-maize-ing set of genomes

Maize is an important crop cultivated worldwide. As maize spread across the world, selection for local environments resulted in variation, but the impact on differences between the genome has not been quantified. By producing high-quality genomic sequences of the 26 lines used in the maize nested association mapping panel, Hufford et al. map important traits and demonstrate the diversity of maize. Examining RNA and methylation of genes across accessions, the authors identified a core set of maize genes. Beyond this core set, comparative analysis across lines identified high levels of variation in the total set of genes, the maize pan-genome. The value of this resource was further exemplified by mapping quantitative traits of interest, including those related to pathogen resistance. —LMZ

Abstract

We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 26 inbreds that serve as the founders for the maize nested association mapping population. The number of pan-genes in these diverse genomes exceeds 103,000, with approximately a third found across all genotypes. The results demonstrate that the ancient tetraploid character of maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat arrays and complete annotation of centromeres revealed additional variation in major cytological landmarks. We show that combining structural variation with single-nucleotide polymorphisms can improve the power of quantitative mapping studies. We also document variation at the level of DNA methylation and demonstrate that unmethylated regions are enriched for cis-regulatory elements that contribute to phenotypic variation.
 
 

2021.01.14.426684v1.full_.pdf

2021.01.14.426684v1.full_.pdf

De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes

view | download 16.91 MB

Additional Information

DOI
Date of publication:
2021